2022-2023學(xué)年安徽省安慶市第八中學(xué)高二數(shù)學(xué)理月考試題含解析_第1頁
2022-2023學(xué)年安徽省安慶市第八中學(xué)高二數(shù)學(xué)理月考試題含解析_第2頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2022-2023學(xué)年安徽省安慶市第八中學(xué)高二數(shù)學(xué)理月考試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 已知空間向量(1,2,4),(x,1,2),并且,則x的值為( )A10 B C. 10 D參考答案:B略2. 若點P為共焦點的橢圓和雙曲線的一個交點, 、分別是它們的左右焦點.設(shè)橢圓離心率為,雙曲線離心率為,若,則 ( )A.1 B. 2 C.3 D.4 參考答案:D略3. 直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1L2,則a的值為()A3B2C3或2D3或2參考答案:A【考點】兩條直線平行

2、的判定;兩條直線平行與傾斜角、斜率的關(guān)系【分析】由題意可知直線L1:ax+3y+1=0,斜率存在,直線L2:2x+(a+1)y+1=0,斜率相等求出a的值【解答】解:直線L1:ax+3y+1=0的斜率為:,直線L1L2,所以L2:2x+(a+1)y+1=0的斜率為:所以=;解得a=3,a=2(舍去)故選A4. 甲、乙、丙、丁四位同學(xué)各自對A、B兩變量的線性相關(guān)性做試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如下表:甲乙丙丁r0.820.780.690.85m106115124103則哪位同學(xué)的試驗結(jié)果體現(xiàn)A、B兩變量有更強的線性相關(guān)性()A甲 B乙 C丙 D丁參考答案:D略5. 若大

3、前提是:任何實數(shù)的平方都大于0,小前提是:aR,結(jié)論是:a20,那么這個演繹推理出錯在()A大前提B小前提C推理過程D沒有出錯參考答案:A【考點】F6:演繹推理的基本方法【分析】要分析一個演繹推理是否正確,主要觀察所給的大前提,小前提和結(jié)論及推理形式是否都正確,根據(jù)這幾個方面都正確,才能得到這個演繹推理正確【解答】解:任何實數(shù)的平方大于0,因為a是實數(shù),所以a20,其中大前提是:任何實數(shù)的平方大于0是不正確的,故選A6. 已知點的球坐標(biāo)是,的柱坐標(biāo)是,則=( ).A B C D參考答案:略7. 已知點,B(0,3), C(0,1),則BAC=( )A 30 B 45 C 60 D 120參考答

4、案:C由題知,則,則 8. 在某項測量中,測量結(jié)果服從正態(tài)分布,若在(0,4)內(nèi)取值的概率為0.6,則在(0,2)內(nèi)取值的概率為 ( )A0.2 B0.3 C0.4 D0.6參考答案:B9. “AB0”是“方程表示橢圓”的 ( )A.必要不充分條件 B. 充分不必要條件 C. 充分必要條件 D. 既不充分也不必要條件參考答案:A10. 有6名選手參加演講比賽,觀眾甲猜測:1、2、6號選手中的一位獲得第一名;觀眾乙猜測:4、5、6號選手都不可能獲得第一名;觀眾丙猜測:4號或5號選手得第一名;觀眾丁猜測:3號選手不可能得第一名.比賽后發(fā)現(xiàn)沒有并列名次,且甲、乙、丙、丁中只有1人猜對比賽結(jié)果,此人是

5、( )A. 甲B. 乙C. 丙D. 丁參考答案:B【分析】分別假設(shè)甲、乙、丙、丁猜對比賽結(jié)果,逐一判斷得到答案.【詳解】假設(shè)甲猜對比賽:則觀眾丁猜測也正確,矛盾假設(shè)乙猜對比賽:3號得第一名,正確假設(shè)丙猜對比賽:則觀眾丁猜測也正確,矛盾假設(shè)丁猜對比賽:則觀眾甲和丙中有一人正確,矛盾故答案選B【點睛】本題考查了邏輯推理,意在考查學(xué)生的邏輯推理能力.二、 填空題:本大題共7小題,每小題4分,共28分11. 在中,已知,動點滿足條件,則點的軌跡方程為 參考答案:12. 關(guān)于曲線,給出下列四個結(jié)論:曲線是雙曲線; 關(guān)于軸對稱;關(guān)于坐標(biāo)原點中心對稱; 與軸所圍成封閉圖形面積小于2則其中正確結(jié)論的序號是 (

6、注:把你認(rèn)為正確結(jié)論的序號都填上)參考答案:(2)(4)13. 函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)函數(shù),則m的取值范圍為參考答案:,+)【考點】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性【分析】對函數(shù)進行求導(dǎo),令導(dǎo)函數(shù)大于等于0在R上恒成立即可【解答】解:若函數(shù)y=x3+x2+mx+1是R上的單調(diào)函數(shù),只需y=3x2+2x+m0恒成立,即=412m0,m故m的取值范圍為,+)故答案為:,+)14. 已知變量x,y滿足約束條件,則z=的取值范圍是 參考答案:0,【考點】簡單線性規(guī)劃 【專題】不等式的解法及應(yīng)用【分析】本題主要考查線性規(guī)劃的基本知識,先畫出約束條件的可行域,然后分析 目標(biāo)函數(shù)的幾何意義,

7、結(jié)合圖象,用數(shù)形結(jié)合的思想,即可求解【解答】解:畫出約束條件所表示的可行域如圖中陰影部分所示,則z=表示可行域內(nèi)的點P(x,y)與點(3,1)的連線的斜率加上1,觀察圖形可知,kOA=0,kOB,=,所以z0,;故答案為:0,【點評】平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標(biāo),即可求出答案15. 將甲、乙、丙、丁四名學(xué)生分到三個不同的班,每個班至少分到一名學(xué)生,且甲、乙兩名學(xué)生不能分到同一個班,則不同分法的種數(shù)為 (用數(shù)字作答)。參考答案:96略16. 甲乙兩人玩猜數(shù)字游戲,

8、先由甲在心中任想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,且。若,則稱甲乙“心有靈犀”?,F(xiàn)任意找兩人玩這個游戲,得出他們“心有靈犀”的概率為 。參考答案:17. 雙曲線的漸近線方程是: 參考答案:三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 已知f(x)為定義在1,1上的奇函數(shù),當(dāng)時,函數(shù)解析式為.(1)求b的值,并求出f(x)在(0,1上的解析式;(2)若對任意的,總有,求實數(shù)a的取值范圍. 參考答案:(1)因為函數(shù)為定義在上的奇函數(shù),當(dāng)時,函數(shù)解析式為.所以,解得,即當(dāng)時的解析式,當(dāng)時,所以又因為,所以-(6分)(2)由(1)得:當(dāng)

9、時,令,則,令,則易得出當(dāng)時,y有最小值-2,即在上的最小值為-2,因為對任意的,總有,所以.-(12分)19. (12分)如圖,四棱錐PABCD的底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC=2,E是PC的中點,EFPB交PB于點F()求點C到平面BDE的距離;()證明:PB平面DEF參考答案:【考點】直線與平面垂直的判定;點、線、面間的距離計算【分析】()利用VCBED=VEBCD,求點C到平面BDE的距離;()證明:DE平面PCB,得出DEPB,又EFPB,且EFDE=E,所以PB平面DEF【解答】()解:取CD的中點O,連結(jié)EO,則EOPD(1分)PD底面ABCD,PD=2,

10、EO底面ABCD, (2分)ABCD是正方形且DC=2,在RtPDC中,在RtBCE中,在RtBAD中,因為BD2=BE2+DE2,所以BEDE設(shè)點C到平面BDE的距離為h,則VCBED=VEBCD,即,解得故點C到平面BDE的距離為(6分)()證明:PD底面ABCD且BC?底面ABCD,PDBC因為ABCD是正方形,所以BCDC又PDDC=D,所以BC平面PDC(7分)因為DE?平面PDC,所以BCDE(8分)因為DE是等腰直角三角形PDC斜邊PC上的中線,所以DEPC(9分)又PCBC=C,所以DE平面PCB(10分)因為PB?平面PCB,所以DEPB(11分)又EFPB,且EFDE=E,

11、所以PB平面DEF(12分)【點評】本題考查線面垂直的判定與性質(zhì),考查等體積方法的運用,考查學(xué)生分析解決問題的能力,屬于中檔題20. 已知函數(shù),求不等式的解集。參考答案:略21. 為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:與教育有關(guān)與教育無關(guān)合計男301040女35540合計651580(1)能否在犯錯誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”?(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;(3)以(2)中的頻率作為概率該校近幾年畢業(yè)

12、的2000名師范類大學(xué)生中隨機選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X)參考公式:k2=(n=a+b+c+d)附表:P(K2k0)0.500.400.250.150.100.050.0250.010k00.4550.7081.3232.0722.7063.8415.0236.635參考答案:【考點】CH:離散型隨機變量的期望與方差;BL:獨立性檢驗【分析】(1)計算觀測值k2,即可得出結(jié)論;(2)由圖表中的數(shù)據(jù)計算這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;(3)由題意知X服從B(4,),計算均值E(X)即可【解答】解:(1)根據(jù)列聯(lián)表計算觀測值K2=2.0513,因為K23.841,所以在犯錯誤的概率不超過5%的前提下,不能認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”;(2)由圖表知這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率為P=;(3)由題意知X服從B(4,),則E(X)=np=4=22. (本小題滿

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論