山東省青島第二中學(xué)2022年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
山東省青島第二中學(xué)2022年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
山東省青島第二中學(xué)2022年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
山東省青島第二中學(xué)2022年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
山東省青島第二中學(xué)2022年高二數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高二下數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1中國古典數(shù)學(xué)有完整的理論體系,其代表我作有周髀算經(jīng)九章算術(shù)孫子算經(jīng)數(shù)書九章等,有5位年輕人計(jì)劃閱讀這4本古典數(shù)學(xué)著作,要求每部古典數(shù)學(xué)著作至少有1人閱讀,則不同的閱讀方案的總數(shù)是( )A480B240C180D1202在等比數(shù)列中,已知,則

2、的值為( )ABCD3函數(shù)的單調(diào)遞減區(qū)間是( )ABC,D,4為了了解手機(jī)品牌的選擇是否和年齡的大小有關(guān),隨機(jī)抽取部分華為手機(jī)使用者和蘋果機(jī)使用者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表:年齡 手機(jī)品牌華為蘋果合計(jì)30歲以上40206030歲以下(含30歲)152540合計(jì)5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根據(jù)表格計(jì)算得的觀測值,據(jù)此判斷下列結(jié)論正確的是( )A沒有任何把握認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”B可以在犯錯誤的概率不超過0.001的前提下認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”C可以在犯錯誤的概率不超過0.01的前提下認(rèn)為“手機(jī)品牌

3、的選擇與年齡大小有關(guān)”D可以在犯錯誤的概率不超過0.01的前提下認(rèn)為“手機(jī)品牌的選擇與年齡大小無關(guān)”5點(diǎn)是雙曲線在第一象限的某點(diǎn),、為雙曲線的焦點(diǎn).若在以為直徑的圓上且滿足,則雙曲線的離心率為()A.B.C.D.6已知三棱錐S-ABC中,底面ABC為邊長等于2的等邊三角形,SA垂直于底面ABC,SA=3,那么直線AB與平面SBC所成角的正弦值為A34 BC74 D7如圖,平行六面體中,則( )ABCD8已知,則( )AB186C240D3049若關(guān)于x的方程|x4x3|ax在R上存在4個不同的實(shí)根,則實(shí)數(shù)a的取值范圍為()A B C D 10若曲線上任意一點(diǎn)處的切線的傾斜角都是銳角,那么整數(shù)等

4、于( )A0B1C D 11i是虛數(shù)單位,若集合S=,則ABCD12如圖,平面ABCD平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF12A66B33C6二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實(shí)數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實(shí)數(shù)的取值范圍是_14已知等差數(shù)列的前項(xiàng)和為,若,則_.15設(shè),過下列點(diǎn)分別作曲線的切線,其中存在三條直線與曲線相切的點(diǎn)是_16一個酒杯的軸截面是拋物線的一部分,它的方程是x2=2y(0y20)在杯內(nèi)放入一個玻璃球,要使球觸及酒杯底部,則玻璃球的半徑r的范圍為 三、解答題:

5、共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓的離心率為,點(diǎn)為橢圓上一點(diǎn). (1)求橢圓C的方程;(2)已知兩條互相垂直的直線,經(jīng)過橢圓的右焦點(diǎn),與橢圓交于四點(diǎn),求四邊形面積的的取值范圍.18(12分)已知為函數(shù)的導(dǎo)函數(shù), . (1)求的單調(diào)區(qū)間; (2)當(dāng)時, 恒成立,求的取值范圍 .19(12分)選修4-5:不等式選講已知函數(shù)的最大值為.(1)求的值;(2)若, ,求的最大值.20(12分) “蛟龍?zhí)枴睆暮5字袔Щ啬撤N生物,甲乙兩個生物小組分別獨(dú)立開展對該生物離開恒溫箱的成活情況進(jìn)行研究,每次試驗(yàn)一個生物,甲組能使生物成活的概率為,乙組能使生物成活的概率為,假定試

6、驗(yàn)后生物成活,則稱該次試驗(yàn)成功,如果生物不成活,則稱該次試驗(yàn)是失敗的(1)甲小組做了三次試驗(yàn),求至少兩次試驗(yàn)成功的概率;(2)若甲乙兩小組各進(jìn)行2次試驗(yàn),求兩個小組試驗(yàn)成功至少3次的概率21(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過橢圓的右焦點(diǎn)作互相垂直的兩條直線、,其中直線交橢圓于兩點(diǎn),直線交直線于點(diǎn),求證:直線平分線段.22(10分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè)函數(shù),當(dāng)時,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】分析:先根據(jù)條件確定有且僅有一本書是

7、兩人閱讀,再根據(jù)先選后排求排列數(shù).詳解:先從5位年輕人中選2人,再進(jìn)行全排列,所以不同的閱讀方案的總數(shù)是選B.點(diǎn)睛:求解排列、組合問題常用的解題方法:(1)元素相鄰的排列問題“捆邦法”;(2)元素相間的排列問題“插空法”;(3)元素有順序限制的排列問題“除序法”;(4)帶有“含”與“不含”“至多”“至少”的排列組合問題間接法.2、D【解析】根據(jù)數(shù)列是等比數(shù)列得到公比,再由數(shù)列的通項(xiàng)公式得到結(jié)果.【詳解】因?yàn)閿?shù)列是等比數(shù)列,故得到進(jìn)而得到,則 故答案為:D.【點(diǎn)睛】這個題目考查了等比數(shù)列的通項(xiàng)的求法,是簡單題.3、A【解析】函數(shù)的單調(diào)減區(qū)間就是函數(shù)的導(dǎo)數(shù)小于零的區(qū)間,可以求出函數(shù)的定義域,再算出

8、函數(shù)的導(dǎo)數(shù),最后解不等式,可得出函數(shù)的單調(diào)減區(qū)間【詳解】解:因?yàn)楹瘮?shù),所以函數(shù)的定義域?yàn)?,求出函?shù)的導(dǎo)數(shù):,;令,解得,所以函數(shù)的單調(diào)減區(qū)間為故選:【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于簡單題,在做題時應(yīng)該避免忽略函數(shù)的定義域而導(dǎo)致的錯誤4、C【解析】根據(jù)的意義判斷【詳解】因?yàn)椋钥梢栽诜稿e誤的概率不超過0.01的前提下認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”,故選:C.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),屬于簡單題5、D【解析】試題分析:根據(jù)題畫圖,可知P為圓與雙曲線的交點(diǎn),根據(jù)雙曲線定義可知:,所以,又,即,所以,雙曲線離心率,所以。考點(diǎn):雙曲線的綜合應(yīng)用。6、D【解析】略HYPERLIN

9、K /console/media/q6brEZosSIv-qRlixmDI94WXJU7F7LfPRQesrx4kV34Gtx1MMkOEGR1h8EqTv-B0oVG42FgLi_JAtkmjPoex1bXxiMJqlO-QOGntWjkGVZ8o1c2ICdLwqYeezJTvSbqxd4PzhMfR9yrGqYq9wLNHJg視頻7、D【解析】利用,即可求解.【詳解】,,.故選:D【點(diǎn)睛】本題考查了向量加法的三角形法則、平行四邊形法則、空間向量的數(shù)量積以及向量模的求法,屬于基礎(chǔ)題.8、A【解析】首先令,這樣可以求出的值,然后把因式分解,這樣可以變成兩個二項(xiàng)式的乘積的形式,利用兩個二項(xiàng)式的

10、通項(xiàng)公式,就可以求出的會下,最后可以計(jì)算出的值.【詳解】令,由已知等式可得:,設(shè)的通項(xiàng)公式為:,則常數(shù)項(xiàng)、的系數(shù)、的系數(shù)分別為:;設(shè)的通項(xiàng)公式為:,則常數(shù)項(xiàng)、的系數(shù)、的系數(shù)分別為:,所以,故本題選A.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,正確求出通項(xiàng)公式是解題的關(guān)鍵.9、A【解析】根據(jù)方程和函數(shù)的關(guān)系轉(zhuǎn)化為函數(shù),利用參數(shù)分離法,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性和極值,利用數(shù)形結(jié)合進(jìn)行求解即可【詳解】當(dāng)x=0時,0=0,0為方程的一個根當(dāng)x0時,方程|x4x3|=ax等價為a=|x3x2|,令f(x)=x3x2,f(x)=3x22x,由f(x)0得0 x,由f(x)0得x0或x,f(x)在

11、(0, )上遞減,在上遞增,又f(1)=0,當(dāng)x=時,函數(shù)f(x)取得極小值f()=,則|f(x)|取得極大值|f()|=,設(shè)的圖象如下圖所示,則由題可知當(dāng)直線y=a與g(x)的圖象有3個交點(diǎn)時0a,此時方程|x4x3|=ax在R上存在4個不同的實(shí)根,故故答案為:A【點(diǎn)睛】(1)本題主要考查函數(shù)與方程的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對這些知識的掌握水平和數(shù)形結(jié)合分析推理能力.(2)解答本題的關(guān)鍵有兩點(diǎn),其一是分離參數(shù)得到a=|x3x2|,其二是利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性得到函數(shù)的圖像.10、B【解析】求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)大于0恒成立轉(zhuǎn)化為二次不等式對

12、應(yīng)二次方程的判別式小于0,進(jìn)一步求解關(guān)于的不等式得答案.【詳解】解:由,得,曲線上任意點(diǎn)處的切線的傾斜角都為銳角,對任意實(shí)數(shù)恒成立,.解得:.整數(shù)的值為1.故答案為B【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,函數(shù)在某點(diǎn)處的導(dǎo)數(shù)值就是對應(yīng)曲線上該點(diǎn)處的切線的斜率,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.11、B【解析】試題分析:由可得,.考點(diǎn):復(fù)數(shù)的計(jì)算,元素與集合的關(guān)系.12、C【解析】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,則A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(xiàn)(a,0,0),AG(a,a,0),AC(0,2a,2a),BG(a,a,0),BC(

13、0,0,2a),設(shè)平面AGC的法向量為n1(x1,y1,1),由AGn1=0ACnsinBGn1|BG二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由得,即.設(shè),由得,從而.判斷函數(shù)的單調(diào)性,數(shù)形結(jié)合求實(shí)數(shù)的取值范圍.【詳解】,即.設(shè).,.由,得;由,得或,函數(shù)在上單調(diào)遞增,在和上單調(diào)遞減,如圖所示 當(dāng)時,.又,且時,由圖象可知,要使不等式的解集中恰有兩個整數(shù),需滿足,即.所以實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求參數(shù)的取值范圍,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.14、【解析】根據(jù)等差數(shù)列的性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列故答案為【點(diǎn)睛】本題

14、考查了等差數(shù)列的性質(zhì),前N項(xiàng)和,利用性質(zhì)可以簡化運(yùn)算.15、.【解析】設(shè)切點(diǎn)坐標(biāo)為,求出切線方程,將點(diǎn)代入切線方程,整理得,令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用單調(diào)性求得極值,利用數(shù)形結(jié)合列不等式,將五個點(diǎn)逐一代入檢驗(yàn)即可得結(jié)果.【詳解】設(shè)切點(diǎn)坐標(biāo)為,則切線方程為,設(shè)切線過點(diǎn),代入切線方程方程可得,整理得,令,則,過能作出三條直線與曲線相切的充要條件為:方程有三個不等的實(shí)數(shù)根,即函數(shù)有三個不同的零點(diǎn),故只需,分別把,代入可以驗(yàn)證,只有符合條件,故答案為.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的極值以及函數(shù)的零點(diǎn),屬于中檔題.對于與“三次函數(shù)”的零點(diǎn)個數(shù)問題,往往考慮函數(shù)的極值符號來解

15、決,設(shè)函數(shù)的極大值為 ,極小值為 :一個零點(diǎn)或;兩個零點(diǎn)或;三個零點(diǎn).16、0r1【解析】設(shè)小球圓心(0,y0)拋物線上點(diǎn)(x,y)點(diǎn)到圓心距離平方r2=x2+(yy0)2=2y+(yy0)2=y2+2(1y0)y+y02若r2最小值在(0,0)時取到,則小球觸及杯底,此二次函數(shù)對稱軸在縱軸左邊,所以1y00所以0y01所以0r1故答案為0r1點(diǎn)評:本題主要考查了拋物線的應(yīng)用考查了學(xué)生利用拋物線的基本知識解決實(shí)際問題的能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可得,解得進(jìn)而得到橢圓的方程;(2)設(shè)出直線l1,l2的方程,直線和橢圓

16、方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長公式,分別求得|AB|,|MN|,再由四邊形的面積公式,化簡整理計(jì)算即可得到取值范圍【詳解】(1)由題意可得,解得a24,b23,c21故橢圓C的方程為;(2)當(dāng)直線l1的方程為x1時,此時直線l2與x軸重合,此時|AB|3,|MN|4,四邊形AMBN面積為S|AB|MN|1設(shè)過點(diǎn)F(1,0)作兩條互相垂直的直線l1:xky+1,直線l2:xy+1,由xky+1和橢圓1,可得(3k2+4)y2+1ky90,判別式顯然大于0,y1+y2,y1y2,則|AB|,把上式中的k換為,可得|MN|則有四邊形AMBN面積為S|AB|MN|,令1+k2t,則3+4k24t1,3k

17、2+43t+1,則S,t1,01,y()2,在(0,)上單調(diào)遞增,在(,1)上單調(diào)遞減,y(12,S,1)故四邊形PMQN面積的取值范圍是【點(diǎn)睛】本題考查直線和橢圓的位置關(guān)系,同時考查直線橢圓截得弦長的問題,以及韋達(dá)定理是解題的關(guān)鍵,屬于難題18、(1)在上單調(diào)遞減; 在上單調(diào)遞增.(2)【解析】分析:(1)首先令,求得,再對函數(shù)求導(dǎo),令,得,從而確定函數(shù)解析式,并求得,之后根據(jù)導(dǎo)數(shù)的符號對函數(shù)的單調(diào)性的決定性作用,求得函數(shù)的單調(diào)區(qū)間;(2)構(gòu)造新函數(shù),將不等式恒成立問題向函數(shù)的最值轉(zhuǎn)化,對參數(shù)進(jìn)行分類討論,確定函數(shù)的單調(diào)區(qū)間,確定函數(shù)的最值點(diǎn),最后求得結(jié)果.詳解:(1)由,得.因?yàn)?所以,解

18、得.所以, ,當(dāng)時, ,則函數(shù)在上單調(diào)遞減;當(dāng)時, ,則函數(shù)在上單調(diào)遞增.(2)令 ,根據(jù)題意,當(dāng)時, 恒成立. .當(dāng),時, 恒成立,所以在上是增函數(shù),且,所以不符合題意;當(dāng),時, 恒成立,所以在上是增函數(shù),且所以不符合題意;當(dāng)時,因?yàn)?所有恒有,故在上是減函數(shù),于是“對任意都成立”的充要條件是,即,解得,故.綜上, 的取值范圍是.點(diǎn)睛:該題考查的是利用導(dǎo)數(shù)研究函數(shù)的問題,在解題的過程中,首先需要求,從而確定函數(shù)的解析式,之后求導(dǎo),令其大于零即為增函數(shù),令其小于零,即為減函數(shù),最后確定函數(shù)的單調(diào)區(qū)間;關(guān)于不等式恒成立問題,大多采用構(gòu)造新函數(shù),向最值靠攏,求導(dǎo),研究單調(diào)性求得結(jié)果.19、(1)2

19、(2)2【解析】試題分析:(1)根據(jù)絕對值定義,將函數(shù)化為分段函數(shù)形式,分別求各段最大值,最后取各段最大值的最大者為的值;(2)利用基本不等式得,即得的最大值.試題解析:(1)由于當(dāng)時,當(dāng)時,當(dāng)時,所以.(2)由已知,有, 因?yàn)?當(dāng)時取等號),(當(dāng)時取等號),所以,即,故的最大值為2.20、(1);(2)【解析】(1)“三次試驗(yàn)中至少兩次試驗(yàn)成功”是指三次試驗(yàn)中,有2次試驗(yàn)成功或3次試驗(yàn)全部成功,先計(jì)算出2次與3次成功的概率,相加即可得到所要求的概率(2)分成功3次,4次兩種情況求其概率相加即可【詳解】(1)設(shè)“甲小組做了三次實(shí)驗(yàn),至少兩次試驗(yàn)成功”為事件A,則其概率為.(2)設(shè)“甲乙兩小組試驗(yàn)成功3次”為事件B,則,設(shè)“甲乙兩小組試驗(yàn)成功4次”為事件C,則,故兩個小組試驗(yàn)成功至少3次的概

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論