福建省漳州市東山第二中學(xué)2023學(xué)年高考仿真卷數(shù)學(xué)試卷(含解析)_第1頁
福建省漳州市東山第二中學(xué)2023學(xué)年高考仿真卷數(shù)學(xué)試卷(含解析)_第2頁
福建省漳州市東山第二中學(xué)2023學(xué)年高考仿真卷數(shù)學(xué)試卷(含解析)_第3頁
福建省漳州市東山第二中學(xué)2023學(xué)年高考仿真卷數(shù)學(xué)試卷(含解析)_第4頁
福建省漳州市東山第二中學(xué)2023學(xué)年高考仿真卷數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項1考試結(jié)束后,請將本試卷和答題卡一并交回2答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求

2、的。1已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為( )ABCD22若函數(shù)在處取得極值2,則( )A-3B3C-2D23秦九韶是我國南寧時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的數(shù)書九章中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為( ) ABCD4已知數(shù)列的前n項和為,且對于任意,滿足,則( )ABCD5M、N是曲線y=sinx與曲線y=cosx的兩個不同的交點,則|MN|的最小值為()ABCD26元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著算術(shù)啟蒙是中國古代代數(shù)

3、學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,則輸出的( )A3B4C5D67設(shè)x、y、z是空間中不同的直線或平面,對下列四種情形:x、y、z均為直線;x、y是直線,z是平面;z是直線,x、y是平面;x、y、z均為平面.其中使“且”為真命題的是( )ABCD8設(shè)雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是( )ABCD9若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則( )ABCD10如圖在直角坐標(biāo)系中,過原點作曲線的切線,切點為,過點分別作、軸的

4、垂線,垂足分別為、,在矩形中隨機(jī)選取一點,則它在陰影部分的概率為( )ABCD11如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是( )ABCD812設(shè)數(shù)列是等差數(shù)列,.則這個數(shù)列的前7項和等于( )A12B21C24D36二、填空題:本題共4小題,每小題5分,共20分。13已知,則展開式中的系數(shù)為_14已知關(guān)于x的不等式(axa24)(x4)0的解集為A,且A中共含有n個整數(shù),則當(dāng)n最小時實數(shù)a的值為_15若變量,滿足約束條件,則的最大值為_16如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為_.三、解答題:共70分。解

5、答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)2019年6月,國內(nèi)的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務(wù)用了不到20年的時間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對的消費意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2023年1月及以后200人我們將大學(xué)生升級時間的早晚與大學(xué)生愿意為套餐支付更多的費用作比較,可得出下圖的關(guān)系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所

6、有早期體驗用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計該學(xué)生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗用戶的人數(shù)有變化?說明理由.18(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.19(12分)某工廠的機(jī)器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修工廠規(guī)定當(dāng)日損壞的元件A在次日早上

7、8:30 之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作每個工人獨立維修A元件需要時間相同維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A個數(shù) 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A個數(shù) 12 24 15 15 15 12 15 15 15 24 從這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個數(shù)()求X的分布列與數(shù)學(xué)

8、期望;()若a,b,且b-a=6,求最大值;()目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學(xué)期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)20(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,證明:.21(12分)某單位準(zhǔn)備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件

9、數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設(shè)備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?22(10分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題

10、5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】設(shè)點的坐標(biāo)為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【題目詳解】設(shè)點的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【答案點睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.2、A【答案解析】對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【題目詳解】因為,所以,則,解得,則.故選:A.【答案點睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運算求

11、解能力,屬于基礎(chǔ)題.3、B【答案解析】列出循環(huán)的每一步,由此可得出輸出的值.【題目詳解】由題意可得:輸入,;第一次循環(huán),繼續(xù)循環(huán);第二次循環(huán),繼續(xù)循環(huán);第三次循環(huán),跳出循環(huán);輸出.故選:B.【答案點睛】本題考查根據(jù)算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎(chǔ)題.4、D【答案解析】利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可【題目詳解】當(dāng)時,所以數(shù)列從第2項起為等差數(shù)列,所以,故選:【答案點睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題5、C【答案解析】兩函數(shù)的圖象如圖所示,則圖

12、中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-cosx2|=+=,|MN|=.故選C.6、B【答案解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解: 記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和

13、、前項積等).7、C【答案解析】舉反例,如直線x、y、z位于正方體的三條共點棱時用垂直于同一平面的兩直線平行判斷.用垂直于同一直線的兩平面平行判斷.舉例,如x、y、z位于正方體的三個共點側(cè)面時.【題目詳解】當(dāng)直線x、y、z位于正方體的三條共點棱時,不正確; 因為垂直于同一平面的兩直線平行,正確;因為垂直于同一直線的兩平面平行,正確;如x、y、z位于正方體的三個共點側(cè)面時, 不正確.故選:C.【答案點睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.8、A【答案解析】依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【題目詳解】解:依題意可得如下圖象,所以則所以

14、所以所以,即故選:A【答案點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于中檔題.9、B【答案解析】利用等差數(shù)列性質(zhì),若,則 求出,再利用等差數(shù)列前項和公式得【題目詳解】解:因為 ,由等差數(shù)列性質(zhì),若,則得,為數(shù)列的前項和,則故選:【答案點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則 (2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.10、A【答案解析】設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【題目詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得,由,解得,方程為

15、,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【答案點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.11、A【答案解析】由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積【題目詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,故選:A【答案點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵12、B【答案解析】根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【題目詳解】因為數(shù)列是等差數(shù)列,所以,即,又,所以,故故選:B【答案點

16、睛】本題主要考查了等差數(shù)列的通項公式,性質(zhì),等差數(shù)列的和,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【答案解析】由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù)【題目詳解】已知,則,它表示4個因式的乘積故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項故展開式中的系數(shù)故答案為:1【答案點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題14、-1【答案解析】討論三種情況,a0時,根據(jù)均值不等式得到a(a)14,計算等號成立的條件得到答案.【題目詳解】已知關(guān)于x的不等式(axa14)(x4)0,a0時,x(a)

17、(x4)0,其中a0,故解集為(a,4),由于a(a)14,當(dāng)且僅當(dāng)a,即a1時取等號,a的最大值為4,當(dāng)且僅當(dāng)a4時,A中共含有最少個整數(shù),此時實數(shù)a的值為1;a0時,4(x4)0,解集為(,4),整數(shù)解有無窮多,故a0不符合條件; a0時,x(a)(x4)0,其中a4,故解集為(,4)(a,+),整數(shù)解有無窮多,故a0不符合條件;綜上所述,a1故答案為:1【答案點睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.15、【答案解析】根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【題目詳

18、解】由約束條件可得可行域如下圖陰影部分所示: 將化為,則最大時,直線在軸截距最大;由直線平移可知,當(dāng)過時,在軸截距最大,由得:,.故答案為:.【答案點睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.16、【答案解析】根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積【題目詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計算它的體積為.故答案為:.【答案點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應(yīng)用問題,是基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

19、17、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗用戶沒有發(fā)生變化,詳見解析【答案解析】(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【題目詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級到的概率估計為樣本中早

20、期體驗用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級多支付10元或10元以上”,由題意可知,事件,相互獨立,且,所以,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗用戶人數(shù)增加.【答案點睛】本題主要考查了離散型隨機(jī)變量的分

21、布列,數(shù)學(xué)期望的求解及應(yīng)用,對于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.18、(1)(2)【答案解析】(1)把代入,利用零點分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【題目詳解】解:(1)當(dāng)時,不等式可化為.討論:當(dāng)時,所以,所以;當(dāng)時,所以,所以;當(dāng)時,所以,所以.綜上,當(dāng)時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【答案點睛】本題主要考查含有絕對值不等式的解

22、法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).19、()分布列見解析,;();()至少增加2人.【答案解析】()求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可()當(dāng)P(aXb)取到最大值時,求出a,b的可能值,然后求解P(aXb)的最大值即可()利用前兩問的結(jié)果,判斷至少增加2人【題目詳解】()X的取值為:9,12,15,18,24;,,X的分布列為:X912151824P故X的數(shù)學(xué)期望;()當(dāng)P(aXb)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,所以P(aXb)的最大值為.()至少增加2人.【

23、答案點睛】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.20、(1);(2)見解析.【答案解析】(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【題目詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且僅當(dāng)時,等號成立,所以當(dāng)時,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因為,則,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.【答案點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強(qiáng)調(diào)一點,在證明不等式時,通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理,本題是一道有高度的壓軸解答題.21、(1)(2)應(yīng)該購買21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論