四川省南充市高坪區(qū)青居中學(xué)2022年高三數(shù)學(xué)文測(cè)試題含解析_第1頁(yè)
四川省南充市高坪區(qū)青居中學(xué)2022年高三數(shù)學(xué)文測(cè)試題含解析_第2頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余5頁(yè)可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、四川省南充市高坪區(qū)青居中學(xué)2022年高三數(shù)學(xué)文測(cè)試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A(1,1)B(1,1)CD參考答案:A考點(diǎn): 復(fù)數(shù)的代數(shù)表示法及其幾何意義專題: 數(shù)系的擴(kuò)充和復(fù)數(shù)分析: 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案解答: 解:=,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(1,1),故選:A點(diǎn)評(píng): 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題2. 在復(fù)平面內(nèi)復(fù)數(shù)、 (是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)在( )A 第一象限 B第二象限 C 第三象限 D第四象限參

2、考答案:D3. 執(zhí)行以下程序框圖,所得的結(jié)果為( ) A1067 B2100 C2101 D 4160參考答案:C4. 設(shè)的實(shí)部與虛部相等,其中為實(shí)數(shù)和,則( )A. B. 1 C.1 D.參考答案:A,所以,即,故選A5. 2012年倫敦奧運(yùn)會(huì)某項(xiàng)目參賽領(lǐng)導(dǎo)小組要從甲、乙、丙、丁、戊五名志愿者中選派四人分別從事翻譯、導(dǎo)游、禮儀、司機(jī)四項(xiàng)不同工作,若其中甲、乙只能從事前三項(xiàng)工作,其余三人均能從事這四項(xiàng)工作,則不同的選派方案共有( ) A18種 B36種 C48種 D72種參考答案:D6. 若不等式在(0,)內(nèi)恒成立,則a的取值范圍是 ( )A. (,1)B. (0,)C. (0,1)D. (,

3、1參考答案:A略7. 定義在R上的函數(shù)f(x)滿足f(x+4)=f(x),f(x)= 若關(guān)于x的方程f(x)ax=0有5個(gè)不同實(shí)根,則正實(shí)數(shù)a的取值范圍是()A(,)B(,)C(166,)D(,82)參考答案:D【分析】由題意可得函數(shù)f(x)是以4為周期的周期函數(shù),做出函數(shù)y=f(x)與函數(shù)y=ax的圖象,由圖象可得方程y=(x4)2+1=ax 在(3,5)上有2個(gè)實(shí)數(shù)根,解得 0a82再由方程f(x)=ax 在(5,6)內(nèi)無(wú)解可得6a1由此求得正實(shí)數(shù)a的取值范圍【解答】解:由題意可得函數(shù)f(x)是以4為周期的周期函數(shù),做出函數(shù)y=f(x)與函數(shù)y=ax的圖象,由圖象可得方程y=(x4)2+1

4、=ax 即 x2+(a8)x+15=0在(3,5)上有2個(gè)實(shí)數(shù)根,由解得 0a82再由方程f(x)=ax 在(5,6)內(nèi)無(wú)解可得6a1,a綜上可得a82,故選 D8. 已知函數(shù)的最小正周期為,則該函數(shù)的圖象是A關(guān)于直線對(duì)稱 B關(guān)于點(diǎn)對(duì)稱C關(guān)于直線對(duì)稱 D關(guān)于點(diǎn)對(duì)稱參考答案: 依題意得,故,所以,因此該函數(shù)的圖象關(guān)于直線對(duì)稱,不關(guān)于點(diǎn)和點(diǎn)對(duì)稱,也不關(guān)于直線對(duì)稱.故選9. 已知函數(shù)在區(qū)間內(nèi)取得極大值在區(qū)間內(nèi)取得極小值,則的取值范圍為 A B C D參考答案:A略10. 已知正四棱柱中,為的中點(diǎn),則直線與平面的距離為A2 B C D1參考答案:D 二、 填空題:本大題共7小題,每小題4分,共28分1

5、1. 已知a,b是實(shí)數(shù),若直線與直線垂直,則ab的最大值為 。參考答案:1略12. ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB=,cosB=,則a+c的值為參考答案:3【考點(diǎn)】余弦定理【分析】由a,b,c成等比數(shù)列,可得b2=ac,由sinB=,cosB=,可解得ac=13,再由余弦定理求得a2+c2=37,從而求得(a+c)2的值,即可得解【解答】解:a,b,c成等比數(shù)列,b2=ac,sinB=,cosB=,可得=1,解得:ac=13,由余弦定理:b2=a2+c22accosB=ac=a2+c2ac,解得:a2+c2=37(a+c)2=a2+c2+2a

6、c=37+213=63,故解得a+c=3故答案為:3【點(diǎn)評(píng)】本題主要考查正弦定理和余弦定理的應(yīng)用,以及同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于中檔題13. 若關(guān)于的不等式的解集為,則實(shí)數(shù)_參考答案:略14. 若函數(shù),則的定義域是 . 參考答案:15. 已知扇形的半徑為1cm,圓心角為2rad,則該扇形的面積為cm2參考答案:1【考點(diǎn)】扇形面積公式【專題】計(jì)算題;分析法;三角函數(shù)的求值【分析】直接求出扇形的弧長(zhǎng),然后求出扇形的面積即可【解答】解:扇形的圓心角為2,半徑為1,扇形的弧長(zhǎng)為:2,所以扇形的面積為: =1故答案為:1【點(diǎn)評(píng)】本題是基礎(chǔ)題,考查扇形的面積的求法,弧長(zhǎng)、半徑、圓心角的關(guān)

7、系,考查計(jì)算能力16. 定義在上的函數(shù),如果對(duì)于任意給定的等比數(shù)列,仍是等比數(shù)列,則稱為“等比函數(shù)”?,F(xiàn)有定義在上的如下函數(shù):;,則其中是“等比函數(shù)”的的序號(hào)為 參考答案:略17. 參考答案:略三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. (本題滿分12分)已知直三棱柱ABC-A1B1C1中,AC=BC,點(diǎn)D是AB的中點(diǎn) (1) 求證:BC1平面CA1D(2) 求證:平面CA1D平面AA1B1B (3) 若底面ABC為邊長(zhǎng)為2的正三角形,BB1= 求三棱錐B1-A1DC的體積參考答案:證明:(1)連接AC1交A1C于點(diǎn)E,連接DE因?yàn)樗倪呅蜛A1C1C是

8、矩形,則E為AC1的中點(diǎn) 又D是AB的中點(diǎn),DEBC1, 又DE面CA1D,BC1面CA1D,BC1面CA1 4分(2)AC=BC,D是AB的中點(diǎn),ABCD,又AA1面ABC,CD面ABC,AA1CD,AA1AB=A, CD面AA1B1B, CD面CA1D, 平面CA1D平面AA1B1B8分(3) ,則(2)知CD面ABB1B,所以高就是CD= ,BD=1,BB1=,所以A1D=B1D=A1B1=2, , 1219. 在直角坐標(biāo)系xOy中,橢圓C1: +=1(ab0)的左右焦點(diǎn)分別為F1,F(xiàn)2,且橢圓C1經(jīng)過點(diǎn)A(1,),同時(shí)F2也是拋物線C2:y2=4x的焦點(diǎn)()求橢圓C1的方程;()E,F(xiàn)

9、是橢圓C1上兩個(gè)動(dòng)點(diǎn),如果直線AE與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值參考答案:【考點(diǎn)】橢圓的簡(jiǎn)單性質(zhì)【分析】()由題意求得c=1,可得橢圓方程為,將點(diǎn)(1,)代入方程求得a值得答案;()寫出AE所在直線方程,y=k(x1)+,代入橢圓方程,求出E的坐標(biāo),同理求出F的坐標(biāo),然后代入斜率公式可得直線EF的斜率為定值,并求得這個(gè)定值【解答】解:()由題意可知,F(xiàn)2(1,0),則c=1,b2=a21,橢圓方程為將點(diǎn)(1,)代入方程可得a2=4,橢圓方程為;()設(shè)AE的方程為y=k(x1)+,代入橢圓方程得:(4k2+3)x2(8k212k)x+(4k212k3)=01是方

10、程的一個(gè)根,直線AF與AE的斜率互為相反數(shù),=,將代入可得20. 已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)(,)(1)求橢圓的方程;(2)設(shè)不過原點(diǎn)O的直線l與該橢圓交于P,Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求OPQ面積的取值范圍參考答案:【考點(diǎn)】直線與圓錐曲線的綜合問題【專題】計(jì)算題【分析】(1)設(shè)出橢圓的方程,將已知點(diǎn)代入橢圓的方程及利用橢圓的離心率公式得到關(guān)于橢圓的三個(gè)參數(shù)的等式,解方程組求出a,b,c的值,代入橢圓方程即可(2)設(shè)出直線的方程,將直線方程與橢圓方程聯(lián)立,消去x得到關(guān)于y的二次方程,利用韋達(dá)定理得到關(guān)于兩個(gè)交點(diǎn)的坐標(biāo)的關(guān)系,將直線OP,PQ,

11、OQ的斜率用坐標(biāo)表示,據(jù)已知三個(gè)斜率成等比數(shù)列,列出方程,將韋達(dá)定理得到的等式代入,求出k的值,利用判別式大于0得到m的范圍,將OPQ面積用m表示,求出面積的范圍【解答】解:(1)由題意可設(shè)橢圓方程為(ab0),則則故所以,橢圓方程為(2)由題意可知,直線l的斜率存在且不為0,故可設(shè)直線l的方程為y=kx+m(m0),P(x1,y1),Q(x2,y2),由消去y得(1+4k2)x2+8kmx+4(m21)=0,則=64k2b216(1+4k2b2)(b21)=16(4k2m2+1)0,且,故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2因?yàn)橹本€OP,PQ,OQ的

12、斜率依次成等比數(shù)列,所以=k2,即+m2=0,又m0,所以k2=,即k=由于直線OP,OQ的斜率存在,且0,得0m22且m21設(shè)d為點(diǎn)O到直線l的距離,則SOPQ=d|PQ|=|x1x2|m|=,所以SOPQ的取值范圍為(0,1)【點(diǎn)評(píng)】求圓錐曲線的方程,一般利用待定系數(shù)法;解決直線與圓錐曲線的位置關(guān)系問題,一般設(shè)出直線方程,將直線方程與圓錐曲線方程聯(lián)立,消去一個(gè)未知數(shù),得到關(guān)于一個(gè)未知數(shù)的二次方程,利用韋達(dá)定理,找突破口注意設(shè)直線方程時(shí),一定要討論直線的斜率是否存在21. 在平面直角坐標(biāo)系xOy中,已知橢圓C:=1(ab0)的離心率e=,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3。 (1)求橢圓C的方程 (2)在橢圓C上,是否存

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論