中英文文獻(xiàn)翻譯-鐵電存儲器的技術(shù)背景_第1頁
中英文文獻(xiàn)翻譯-鐵電存儲器的技術(shù)背景_第2頁
中英文文獻(xiàn)翻譯-鐵電存儲器的技術(shù)背景_第3頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、鐵電存儲器的技術(shù)背景概述目前的存儲器技術(shù)可以分為兩種。第一種是非易失性存儲器。傳統(tǒng)上來說,他們被應(yīng)用于只讀存儲器因為他們都有不易寫入的特點。這些存儲器均源于只讀存儲器(ROM)技術(shù), 包括 EPROM, EEPROM, and Flash EPROM。SRAM(靜態(tài)存儲器)DRAM(動態(tài)存儲器RAMRAMFRAM易失性存儲器。FRAM下保存數(shù)據(jù)。FRAM 產(chǎn)品可以保存數(shù)據(jù)達(dá)幾千年。這種存儲技術(shù)已經(jīng)成為存儲器的主流。這種存儲技術(shù)可以簡單的解釋為對現(xiàn)在存儲技術(shù)的概述。什么是鐵電存儲器儲器包括靜態(tài)存儲器 SRAM(static random access memory)(dynamicrandoma

2、ccessmemory)。 SRAMDRAMRAM只讀存儲器的東西肯定不容易進(jìn)行寫入操作,而事實上是根本不能寫入。所有由ROMEPROMEEPROMFlash擦寫,寫入時功耗大。鐵電存儲器能兼容 RAM 的一切功能,并且和 ROM 技術(shù)一樣,是一種非易失性的RAM。RAMFRAM所固有的一種偏振極化特性,與電磁作用無關(guān)。0”狀態(tài)和“1”狀態(tài)。由于它的基于隨機(jī)存取儲存器而設(shè)計的,因此它的讀操作和寫操作都很容易。但它和動態(tài)的隨機(jī)存儲器又有所不同,數(shù)據(jù)的存儲狀態(tài)是穩(wěn)定的。因此,鐵電存儲器不需周期性刷新,即使在掉電的條件下,F(xiàn)RAM 仍能保存數(shù)據(jù)。許多人都誤解鐵電這個名字 , 一個名字使用前綴 fer

3、ro機(jī)存儲器一樣,操作使用的是電場。鐵電存儲器的技術(shù)原理當(dāng)一個電場被加到鐵電晶體時,中心原子順著電場的方向在晶體里移動。當(dāng)原子移動時,它通過一個能量壁壘,從而引起電荷擊穿。內(nèi)部電路感應(yīng)到電鐵電存儲器不需要定時更新,掉電后數(shù)據(jù)能夠繼續(xù)保存,速度快而且不容易寫壞。CMOSCMOS之上,并置于兩電極之間,使用金屬互連并鈍化后完成鐵電制造過程。Ramtron制造工藝的發(fā)展,在鐵電存儲器的每一單元內(nèi)都不再需要配置標(biāo)準(zhǔn)電容器。Ramtron/DRAM2T/2CRamtron 同樣也通過轉(zhuǎn)向更小的技術(shù)節(jié)點來提高鐵電存儲器各單元的成本效0.350.5降低了芯片的功耗,提高了單個晶元的利用率。所有這些令人振奮的

4、發(fā)展都使得鐵電存儲器在人們?nèi)粘I畹母鱾€領(lǐng)域被廣 斷改進(jìn)性能在世界范圍內(nèi)得到廣泛的應(yīng)用。鐵電存儲器的操作一個簡單的鐵電晶體模型如圖1鐵電存儲器晶體的中心原子結(jié)構(gòu)所示。在鐵電讀操作,如果原來晶體中心原子的位置與所施加的電場方向使中心原子要達(dá)到的位置相同,中心原子不會移動;若相反,則中心原子將越過晶體中間層的高能階到達(dá)另一位置。在高能階的作用下,充電波形上就會出現(xiàn)一個尖峰,把這允許由電路決定存儲電荷的狀態(tài)。晶體原子狀態(tài)的切換時間小于1ns,完整的讀操作的時間小于70ns。因為讀操作導(dǎo)致存儲單元狀態(tài)的改變,需要電路自動恢復(fù)其內(nèi)容,所以每個讀但存儲無效的時間要低于50ns。寫操作寫操作和讀操作十分類似

5、。與其他的非易失性存儲技術(shù)不同,寫操作非常簡單無需系統(tǒng)延時。數(shù)據(jù)被寫到鐵電的電容中。如果需要的話,新的數(shù)據(jù)很容易改變鐵電晶體的狀態(tài)。對于讀操作,晶體原子狀態(tài)的切換時間小于1ns,讀操作的時間小于70ns。對于讀操作, “預(yù)充”操作伴隨在 寫操作之后。FRAM存儲單元結(jié)構(gòu)目前的FRAM產(chǎn)品使用2個場效應(yīng)管和2個電容(2T2C,每個存儲單元包括數(shù)據(jù)19932T2C元提高了數(shù)據(jù)的可信度,特別是對于早期的非易失性存儲器是非常重要的。 2T2C存儲單元結(jié)構(gòu)如圖2所示。圖2 2T2C存儲單元結(jié)構(gòu)2T2C存儲單元為每個數(shù)據(jù)位提供了一個相近的參考位,依照數(shù)據(jù)狀態(tài)進(jìn)行編或“1”任意狀態(tài)。涉及到相應(yīng)的存儲器時,存

6、儲電路能非常精確地測量那個變化和非變化電容器之間不同。存儲隊列中電容的變化被藉由從每一點點有差別的信號中除去。2001(1T1C)被提高。簡化的1T1C存儲單元結(jié)構(gòu)框圖如圖3所示。圖31T1C存儲單元結(jié)構(gòu)框圖FRAM 的發(fā)展正如前文所提到的,自從 1993年起基于鐵電存儲器FRAM產(chǎn)品已經(jīng)被廣泛的應(yīng)用于商業(yè)生產(chǎn)。在工業(yè)生產(chǎn)中,鐵電技術(shù)已經(jīng)趨于成熟。一些現(xiàn)象已經(jīng)預(yù)示著下一種主流存儲技術(shù)的出現(xiàn)。一方面,很多的半導(dǎo)體供應(yīng)商正在發(fā)展鐵電。一些人關(guān)注近期產(chǎn)品的發(fā)展,而另一些人則關(guān)注已成熟的存儲器和產(chǎn)品的發(fā)展。每個新的密度的一代使得產(chǎn)生一系列的用戶和廠家。 公司是唯一的一家生產(chǎn) FRAMFRAM發(fā)展適用于

7、 FRAM展的總資源正在劇烈的增長。這正在引起 FRAM 技術(shù)進(jìn)步的里程碑。下表是Ramtron 公司和它的合伙人為FRAM 技術(shù)的發(fā)展選擇了歷史的里程碑和近期的發(fā)展。1984198419891993199619981999200020012002Ramtron公司發(fā)現(xiàn) FRAM 的發(fā)展技術(shù)FRAM第一次發(fā)展的過程首次制造容量為4Kbit FRAM 存儲器的商業(yè)產(chǎn)品容量為16Kbit FRAM 存儲器的制造廠家大量生產(chǎn) 0.1u的FRAM在64Kb FRAM中首次加入MCU w/在工廠中大量生產(chǎn) 0.5 u的FRAM生產(chǎn)64Kb, 256Kb FRAM 存儲器3V FRAM 產(chǎn)品的操作示范生產(chǎn)

8、256K 1T1C 的FRAM 存儲器在FRAM生產(chǎn)過程中首次使用雙層金屬 生產(chǎn)3V、0.35u的產(chǎn)品256K 1T1C FRAM w/每周期鐵電存儲器的應(yīng)用儀表汽車安全氣囊、車身控制系統(tǒng)、車載收音機(jī)、勻速控制、車載 DVD 、引擎、娛樂設(shè)備、儀器簇、 傳動系、保險裝置、遙感勘測/導(dǎo)航系統(tǒng)、自動收費系統(tǒng)通訊移動通訊發(fā)射站、 數(shù)據(jù)記錄儀 、電話、收音機(jī)、電信、可攜式 GPS消費性電子產(chǎn)品家電、機(jī)頂盒、等離子液晶屏電視計算機(jī)辦公設(shè)備、雷達(dá)系統(tǒng)、 網(wǎng)絡(luò)附屬存儲 、電子式電腦切換器。工業(yè)、科技、醫(yī)療工業(yè)自動控制、電梯、酒店門鎖、掌上操作儀器、醫(yī)療儀器、發(fā)動機(jī)控制。其他自動提款機(jī)、 照相機(jī)、游戲機(jī)、PO

9、S 功能機(jī)(務(wù)、 自動售貨機(jī)。鐵電存儲器在應(yīng)用中所起的作用數(shù)據(jù)收集存儲鐵電存儲器能夠允許系統(tǒng)設(shè)計師更快、更頻繁的寫入數(shù)據(jù),斷電不易丟失。對于使用 EEPROM 的用戶而言,這些是不能享受到的優(yōu)良性能。數(shù)據(jù)收集包括數(shù)據(jù)獲取和存儲數(shù)據(jù),而這些數(shù)據(jù)必須在掉電的情況下仍能保留(不是暫時性的或中間結(jié)果暫存。這些就是具有基本收集數(shù)據(jù)功能的系統(tǒng)或者的過程紀(jì)錄是很重要的。配置信息存儲鐵電存儲器能夠靈活實時的,并非在斷電的瞬間,存儲配置信息,從而幫助系統(tǒng)設(shè)計師克服由于突然掉電而造成的數(shù)據(jù)丟失。配置信息的存儲能夠隨著時間來追蹤系統(tǒng)變化。其目標(biāo)是在接通電源后恢復(fù)信息在以前的狀態(tài)和位置,識別錯誤發(fā)生的起因??偟膩碚f,

10、數(shù)據(jù)收集通常是一個系統(tǒng)或者子系統(tǒng)的功能,然而配置信息存儲則是一個低級別的工程功能,與系統(tǒng)的類別無關(guān)。非易失性緩沖器鐵電存儲器能夠在數(shù)據(jù)發(fā)送或存儲到其它非易失性媒介前,很快地存儲正在運行中的數(shù)據(jù)。在這種情況下,數(shù)據(jù)信息由一個子系統(tǒng)傳輸?shù)搅硪粋€子系統(tǒng)。這個信息是十分重要的并且不允許在斷電的情況下丟失。在有些情況下, 目標(biāo)系統(tǒng)是一個更大的存儲器。 而鐵電存儲器的快速、無限次的讀寫特點使得數(shù)據(jù)在被發(fā)送到另一個系統(tǒng)前就能及時保存。SRAM 的替代和擴(kuò)展存儲器鐵電存儲器的快速寫入和非易失性的特點可以通過系統(tǒng)設(shè)計師把SRAM 和EEPROM 的特點合而為一或者能單純的擴(kuò)展 SRAM 的功能而實現(xiàn)。ROMRA

11、MEEPROMEEPROMEEPROM,SRAMFRAM Technology BackgrounderOverviewEstablished memory technologies are divided into two categories. First are nonvolatile memories. Traditionally, systems use them in read-only or read mostly applications since they are difficult to write. These memories are derivatives of R

12、OM technology that include EPROM, EEPROM, and Flash EPROM.Second are volatile memories. These are RAM devices including SRAM and DRAM. Since they are easy to write, RAMs often store data that must change often. While users can write RAMs easily, they are volatile; therefore storing quantities of dat

13、a in the absence of power continues to be an engineering challenge.Ferroelectric Random Access Memory or FRAM has attributes that make it the ideal nonvolatile memory. It is a true nonvolatile RAM. FRAM memory write advantages and nonvolatility make it quite suitable for storing data in the absence

14、of power. FRAM based products have been available for several years in limited quantities. The technology is now moving rapidly toward its emergence as a mainstream memory selection. This technology note provides a brief explanation of its operation as well as an overview of the technology developme

15、nt status.What is FRAM?FRAM offers a unique set of features relative to other semiconductor technologies. Traditional mainstream semiconductor memories can be divided into two primary categories - volatile and nonvolatile. Volatile memories include SRAM (static random access memory) and DRAM (dynami

16、c random access memory). SRAMs and DRAMs lose their contents after power is removed from the electronic system. RAM type devices are very easy to use, and are high performing, but they share the annoying quirk of losing their mind when the lights go out.Nonvolatile memories do not lose their content

17、s when power is removed. However all of the mainstream nonvolatile memories share a common ancestry that derives from ROM (read only memory) technology. As you might guess, something called read only memory is not easy to write, in fact its impossible. All of its descendants make it very difficult t

18、o write new information into them. They include technologies called EPROM (almost obsolete now), EEPROM, and Flash. ROM based technologies are very slow to write, wear out after being written a small number of times, and use a large amount of power to write.FRAM offers features consistent with a RAM

19、 technology, but is nonvolatile like a ROM technology. FRAM bridges the gap between the two categories and creates something completely new - a nonvolatile RAM.FRAM is a RAM-based device that uses the ferroelectric effect for a storage mechanism. This is a completely different mechanism than the one

20、 used by other nonvolatile memories, which use floating gate technology. The ferroelectric effect isthe ability of a material to store an electric polarization in the absence of an applied electric field.Depositing a film of ferroelectric material in crystalline form between two electrode plates to

21、form a capacitor creates a FRAM memory cell. This capacitor construction is very similar to that of a DRAM capacitor. Rather than storing data as charge on a capacitor like a DRAM, a ferroelectric memory stores data within a crystalline structure. ThesePerovskitecrystalsmaintaintwostablestates a1 an

22、d a0.Figure 1. Perovskite Ferroelectric Crystal Due to its basic RAM design, the circuit readsandwritessimplyandHowever unlike a DRAM,the data state is stable.ThereforetheFRAMneeds no periodic refresh and when power fails, the FRAM retains its data.Peoplecommonlymisunderstandname ferroelectric. To m

23、any, a name theprefix“ferro” seems to imply iron or magnetism. The word ferroelectric also is confused with ferromagnetic. In reality, ferroelectric memories use no iron magnetic principles. They are not susceptible to external magnetic fields as they operate entirely using electric fields just as c

24、onventional DRAMs.FRAM Technology BasicsWhen an electric field is applied to a ferroelectric crystal, the central atom moves in direction of the field.As the atom moves within the crystal, it passes through an energy barrier, causing a charge spike. Internal circuits sense the charge spike and set t

25、he memory. If the electric field is removed from the crystal, the central atom stays in position, preserving the stateof the memory. Therefore, the FRAM memory needs no periodic refresh and when power fails, FRAM memory retains its data. Its fast, and doesnt wear out!FRAM memory technology is compat

26、ible with industry standard CMOS manufacturing processes. The ferroelectric thin film is placed over CMOS base layers and sandwiched between two electrodes. Metal interconnect and passivation complete the process.Ramtrons FRAM memory technology has matured significantly since its inception. Initial

27、FRAM memory architectures required a two-transistor/two-capacitor (2T/2C) memory architecture, which resulted in relatively large cell sizes. Recent advances in ferroelectric materials and processing have eliminated the need for an internal reference capacitor within every cell in the ferroelectric

28、memory array.Ramtrons new one-transistor/one-capacitor cell architecture operates like a DRAM using a single capacitor as a common reference for each column in the memory array, effectivelycuttingtherequiredcellareainhalfcomparedtoexistingarchitectures. The new architecture significantly improves th

29、e die leverage and reduces manufacturing costs for resulting FRAM memory products.Ramtronhasalsomigratedtosmallertechnologynodestoincreasethecost effectiveness of FRAM memory cells. A recent move to a 0.35-micron manufacturing process reduces the operating power and increases the die leverage per wa

30、fer to earlier generations of Ramtrons FRAM products built on the companys existing 0.5-micron manufacturing line.All of these exciting developments in FRAM memory technology are finding their way into a host of applications that people use everyday. From office copiers and high-end servers to autom

31、otive airbags and entertainment systems, FRAM memory is improving an array of products and applications worldwide.FRAM OperationA simplified model of a ferroelectric crystal is shown in Figure 1. A ferroelectric crystal has a mobile atom in the center of the crystal. Applying an electric field acros

32、s a face of the crystal causes this atom to move in the direction of the field. Reversing the field causes the atom to move in the opposite direction. Atom positions at the top and bottom of the crystal are stable. Therefore removing the electric field leaves the atom in a stable position, even in t

33、he absence of power. As a memory element, the ferroelectric crystal creates an ideal digital memory. It contains two stable data states, it requires very little time and energy to change states, and is very stable over a variety of environmental conditions.Read OperationAlthough the memory element i

34、s a capacitor, it does not store data as linear charge. In order to read a FRAM memory cell, it is necessary to detect the position of the atoms within the Perovskite crystals. Unfortunately, they cannot be directly sensed. The FRAM read process works as follows. An electric field is applied across

35、the capacitor. The mobile atoms will move across the crystals in the direction of the field if they are not already in the appropriate positions. In the middle of the crystal, a high-energy state holds the atoms in place when no field is present. As the atoms move through this high-energy state, a c

36、harge spike is emitted. The circuit dumps charge resulting from the applied field from the capacitor and compares it to the charge from a reference. A capacitor with atoms that switch states will emit a larger charge than a capacitor with atoms that do not switch. The no switching capacitor will emi

37、t the ordinary DRAM charge while the switching capacitor will emit the combination of the DRAM and ferroelectric charges. The memory circuit must determine which capacitor switched.This switched charge allows the circuit to determine the state of a memory cell.Thestate switch occurs in under 1 ns, w

38、ith the complete circuit access taking less than 70 ns.Since a memory read operation involves a change of state, the circuit automatically restores the memory state. Therefore each read access is accompanied by a precharge operation that restores the memory state. Although the read is destructive, t

39、he time during which the memory cell is invalid is under 50 ns.Write OperationA write-operation is very similar to a read operation. Unlike other nonvolatile memory technologies, a write-operation is very simple and requires no system overhead. The circuit applies write data to the ferroelectric cap

40、acitors. If necessary, the new data simply switches the state of the ferroelectric crystals. As with a read, the change of occurs in under 1 ns with a full access taking under 70 ns. As with a read, a precharge operation follows a write access.FRAMMemoryArchitecturesCurrent FRAM products use a two-t

41、ransistor, two capacitor memory (2T2C) cell. This cell, which provides each data bit with its own reference, is a well-proven scheme. The fundamental cell design has been in field use in products since 1993. The 2T2C memory cell provides robust data retention reliability, which is especially importa

42、nt during the early proving stages for a new nonvolatile memory. An example of the cell is shown in Figure 2.The 2T2C memory cell provides an individual reference in close proximity for each data bit. Depending on the programmed data state, one capacitor will switch when read while the other not swi

43、tch. The assignment of1 and 0 states is arbitrary during the memory design.Given the close proximity, the memory circuit can measure the charge differencebetween the switching and non-switching capacitors very precisely.Variations in the capacitors across the memory array are eliminated from conside

44、ration by having a differential signal for each bit.The 1T1C technology entered the market in 2001, it significantly improves the cost-per-bit ratio of resulting FRAM memory products. resulting FRAM memory products. A simplifieddiagram of the 1T1C cell is below in Figure 3.FRAM DevelopmentAs mention

45、ed earlier, FRAM-based products have been commercially available 1993. The considerable feature advantages of FRAM technology have stirred interest within the industry. Several signposts point to its emergence as the next mainstream memory technology.On the supply side, numerous semiconductor suppli

46、ers are developing ferroelectric processes. A few concentrate on near-term production while others are eyeing the longer-term opportunity for more sophisticated memories and embedded products.On the demand side, a broad market has developed for low-density FRAM products that are currently in product

47、ion. Many potential users are watching the FRAM roadmap, looking for FRAM densities and configurations that will be suitable their applications. Each new density generation enables a range of new potential users and applications.Until recently, Ramtron was the only company producing FRAM products. A

48、s a of its successful licensing program, several new vendors are in the process of establishing production capability. The total resources being applied to FRAM development on a global basis are increasing dramatically. This is causing acceleration in the advancement of FRAM technology and its proce

49、ss milestones.The following table shows selected historical milestones and the near-term roadmap for FRAM technology development by Ramtron and its partners.1984Ramtron founded to develop FRAM technology1989First FRAM fab installed for process development1993First FRAM commercial product introduced4

50、Kbit FRAM memory in volume production199616Kbit FRAM memory in volume production1998Mass at a foundry Additional foundries openproduction of FRAMat 1.0u pilot-production linesFirst MCU w/ embedded 64Kb FRAM prototype1999Mass FRAM ata foundryproduction of 0.564Kb, 256Kb FRAM memories in production200

51、03V operation FRAM products demonstrated2001256K 1T1C FRAM in productionFirst embedded product using two-layer metalFRAM process in production3V operation products enter productionprocess0.35 enters productionprocess0.35 enters production2002256K 1T1C FRAM w/Real Time ClockFRAM Product ApplicationsM

52、eteringelectric power water gas flow tax postageAutomotiveairbag body control car radio cruise control DVD engine entertainment instrument clusters power train safety telematics/navigation toll tagCommunicationscell base stations data logger phones radio telecom portable GPSConsumer Electronicshome

53、automation set top plasma and LCD TVComputingoffice equipment RAID network attached storage KVM switchIndustrial, Scientific and Medicalindustrial automation elevator hotel lock handheld instrument medical motor controlOther.ATM bill changer camera gaming military point of sale machine vendingWhat FRAM does in applicationsData Collection and LoggingFRAM allows system designers to write data to nonvolatile memory faster and more often - a luxury not afforded to users of

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論