版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、初中課件中小學精編教育課件初中課件中小學精編教育課件5.2反比例函數(shù)(3)-反比例函數(shù)的綜合應用九年級數(shù)學下冊第五章對函數(shù)的再探索5.2反比例函數(shù)(3)-反比例函數(shù)的綜合應用九年級反比例函數(shù) ( k是常數(shù),k0 )y =xk 解析式 圖象 性質(zhì)雙曲線k0 y隨x的增大而減小k0 y隨x的增大而增大 xy=k(k0) 反比例函數(shù)圖象上任取一點,其橫縱坐標的乘積為反比例系數(shù)k. 知識回顧:反比例函數(shù) ( k是常數(shù),k0 )y =xk 解析式 圖象1.理解反比例函數(shù)中k的幾何性質(zhì);2.能綜合運用反比例函數(shù)的知識解決相關(guān)問題.1.理解反比例函數(shù)中k的幾何性質(zhì);PQS1S2想一想:S1、S2有什么關(guān)系?
2、為什么?RS3 結(jié)論:任取一點向兩坐標軸作垂線得到的矩形面積是一個定值,為k |. 觀察思考:PQS1S2想一想:S1、S2有什么關(guān)系?為什么?RS3 PQ想一想:S1、S2、S3等于多少?S1S2S3觀察思考:PQ想一想:S1、S2、S3等于多少?S1S2S3觀察思考:1.如圖,點P是反比例函數(shù)圖象上的一點,若矩形AOBP的面積是6.請寫出這個反比例函數(shù)的解析式. ( 是常數(shù), 0)y =xkkkOPABOPB2.若BPO的面積是5,那么函數(shù)解析式又是什么呢?小試牛刀1.如圖,點P是反比例函數(shù) ( 是3.如圖,點P是x軸上的一個動點,過點P作x軸的垂線PQ交雙曲線于點Q,連結(jié)OQ, 當點P沿
3、x軸正半方向運動時,RtQOP面積( ). A.逐漸增大 B.逐漸減小 C.保持不變 D.無法確定3.如圖,點P是x軸上的一個動點,過點P作x軸的垂線PQ交雙典型例題:典型例題:解析:(1)由反比例函數(shù)的幾何性質(zhì)可知: (2)以求得P(5,3),故可知 OA=3,AD=PQ=3,所以:解析:(1)由反比例函數(shù)的幾何性質(zhì)可知:(2)以求得P(5,小試牛刀小試牛刀解析: 由點A可求得k=-2x3=-6;再由 3m=-6可求得m=-2;所以B(3,-2);將點A,B代入到y(tǒng)=ax+b即可求得a,b的值。解析:小試牛刀小試牛刀挑戰(zhàn)自我:解析:不能相交;假設(shè)相交于點A(a,b),則應有ab=k1=k2,這與k1k2相矛盾。所以不能相交。想一想:反比例函數(shù) 上那個點距離原點最近?挑戰(zhàn)自我:解析:不能相交;假設(shè)相交于點A(a,b),想一想:教材第22頁課后練習1、2題.教材第22頁課后練習1、2題.一、反比例函數(shù)中k的幾何性質(zhì) 反比例函數(shù)圖象上任取一點,其橫縱坐標的乘積為反比例系數(shù)k. 二、反比例函數(shù)綜合運基本思路 首先運用待定系數(shù)法求出相關(guān)的函數(shù)關(guān)系式; 再根據(jù)要求運用函數(shù)性質(zhì)解決問題. 注意: 任意兩個反比例函數(shù)的圖象均相交.一、反比例函數(shù)中k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《基于機器學習的用電異常分析模型的研究與應用》
- 《證券內(nèi)幕交易主體制度研究》
- 《晚清異域游記傳播研究》
- 城市軌道交通與城市鋼鐵材料業(yè)的整合考核試卷
- 《環(huán)狀RNA對半滑舌鰨卵巢成熟調(diào)控機制的初步研究》
- 新型材料的鋰離子電池制備工藝參數(shù)研究考核試卷
- 公共設(shè)施管理的客戶滿意度考核試卷
- 2024-2030年中國椴木靈芝行業(yè)深度調(diào)查及投資價值研究報告版
- 塑料制品的動態(tài)供應鏈與庫存管理考核試卷
- 《大氣壓空氣等離子體均勻性研究》
- 2024年企業(yè)業(yè)績對賭協(xié)議模板指南
- “全民消防生命至上”主題班會教案(3篇)
- 2024年海南省高考歷史試卷(含答案解析)
- 2024年湖北武漢大學化學與分子科學學院招聘1人(實驗中心)歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 三年級美術(shù)上冊全冊教案(湘教版)
- 2024版成人術(shù)中非計劃低體溫預防與護理培訓課件
- 24秋國家開放大學《當代中國政治制度》形考任務(wù)1-4參考答案
- 制漿洗漂詳細過程工藝
- 吉林省義務(wù)教育階段新課程計劃表(新)
- 臨床用藥管理制度
- 多層工業(yè)廠房施工組織設(shè)計#現(xiàn)澆框架結(jié)構(gòu)
評論
0/150
提交評論