![數(shù)量經(jīng)濟(jì)學(xué)講義數(shù)理經(jīng)濟(jì)學(xué)_第1頁](http://file4.renrendoc.com/view/e98204e303098f6ca208c59778e72d91/e98204e303098f6ca208c59778e72d911.gif)
![數(shù)量經(jīng)濟(jì)學(xué)講義數(shù)理經(jīng)濟(jì)學(xué)_第2頁](http://file4.renrendoc.com/view/e98204e303098f6ca208c59778e72d91/e98204e303098f6ca208c59778e72d912.gif)
![數(shù)量經(jīng)濟(jì)學(xué)講義數(shù)理經(jīng)濟(jì)學(xué)_第3頁](http://file4.renrendoc.com/view/e98204e303098f6ca208c59778e72d91/e98204e303098f6ca208c59778e72d913.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站LectureNote4.3LinearTransformationsand4.27.Definition.Weshallsaythataf : L HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站LectureNote4.3LinearTransformationsand4.27.Definition.Weshallsaythataf : L1 L2 is linear iff f (a,b F)(x,y L1): f(ax +by) =af(x)+bf(y)Linearfunctionsare
2、often calledlineartransformations,ratherthan4.28. 1. p Rn,f : Rn R by: 2.Aisan mn real matrix,andf : Rn Rm by: 13.ConsiderthespaceCdefinedin4.13,anddefineby (f) = f0Alinear function maps a linear combination of two points in the domain into the same linear combination of the images of those two poin
3、ts in the range space. samerelationshipholdsforanyfinitelinearcombinationofpointsinthe4.30. Suppose f : L1 L2 is a linear function, and S1,S2 subspaces of L ,respectively. Then f(S ) is a subspace L , f1(S ) is 122subspaceof L14.31.Definition.f : L is a linear function, then the is called f1kernel o
4、fthefunction,ortransformation,andisdenotedby kf 4.32.Proposition.f : L1 L2 isalinearfunction,thenfisone-to-oneiff kf =04.32b. Suppose L1 is a linear space with finite dimension. f : L1 L2 is a linear function.Then we have dim(kf )+dim(f(L1) =dim(L1) 1 HYPERLINK / 官方總站 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK /
5、 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站4.33 Proposition. is both linear and one-to-one, and f HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站4.33 Proposition. is both linear and one-to-one, and f : L1 S = f(L ).Then the g = f1 :S islinear,one-one,andonto 1114.34. Definition. A linear function, f : L1 L2, which is also one-t
6、o-one and onto said to be an isomorphism; and if such a function exists, L1 is said to be to L2 (orwesimplysaytheyare4.35. Proposition. f : L1 L2 and g : L2 L3 are both isomorphism, then compositionh =g o f ,isalsoan4.36. IsomorphismasanequivalenceAny and all implications which can be deduced from l
7、inear space assumptions regarding a particular linear space, L, apply equally in any other linear space, L, which is an element of L.4.37. Theorem. If L is any real linear space of finite dimension, n, then L isomorphicto Rn 4.4 Normed Linear4.39. Definition. We say a function : L R+ is a norm iff,
8、for all x,y L , aF : 1.(x)=0 x =0; 2.(x +y)(x)+(y); 3.(ax)=|a |(x). A linear equippedwith anormis calleda normedlinear 4.40. 2 HYPERLINK / 官方總站 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站In Rn , the usual Euclidean normis a normby the above HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站In Rn , th
9、e usual Euclidean normis a normby the above On the space m (the space of bounded real sequences), (x) = sup | xn |n(f) = max | f(x) |.Onspace Ca,b , define isanormCa,b xa,b4.41. Definition. We shall say that a function, d :LL is a metric for Liff, all x,y,z L ,wed(x,y)=0iffx=y 4.42. Theorem. If L is
10、 a normed linear space, with norm , and if we d : LL R+ by d(x,y) =(x y). then d is a metric for L. Furthermore, d thefollowingtwoadditionalconditions:forallx,y,zinLandainF,we(homogeneity):d(ax,ay)=|a|(translationinvariance):d(x+z,4.43. interiorpointofX; X is open;a point of closure of closed set. (
11、As was the case in Rn , it can be shown that X is closed iff it is equal to its closure)4.44. 1. CauchyIt is easy to show that if a sequence converges, then it is a Cauchy sequence. 3 HYPERLINK / 官方總站 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站the other hand, in an arbitrary normed line
12、ar space, a Cauchy sequence may not be convergent.However, if it is the case that every Cauchy sequence in a linear space, L, converges to a point in L, we will say that L is complete. In particular, a normed HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站the other hand, in an arbitrary normed linear space, a
13、Cauchy sequence may not be convergent.However, if it is the case that every Cauchy sequence in a linear space, L, converges to a point in L, we will say that L is complete. In particular, a normedlinearspace iscalled aBanach space.RnisExample: Linear f xR |(mN)(n m):x 0. nxn where x =(1, ,., ,0,0,.)
14、.ItisaCauchysequencebutnotn4.45. Continuousatapointx;continuousUniformlycontinuousonaset4.46. 1. Let L be the space Ca,b , and let x in a,b be fixed. (f) = max | f(x) |. xa,bthen define : L R by (f)= f(x). Then this function is uniformly on2. Let Lbe any real normed linear space, with norm |.|, let
15、Abe a non-empty of L, and define the function (x,A) =inf |x y |, for x L . Then yuniformlycontinuouson(ComparedwithThm3.20and4.47.Theorem.Suppose f :L1 L2,whereLsarenormedlinearspacewithi ThenthefollowingconditionsaremutuallyThefunctionfisForeachopensubset,U,of L , f1(U) isopenin L 21Foreachclosedsu
16、bset,C,L f1(C) isclosedin L 214 HYPERLINK / 官方總站 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站4.5InnerProduct4.51 Definition If L is a real HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站4.5InnerProduct4.51 Definition If L is a real linear space, we say that a f : LL R is inner product for Liff, wri
17、ting xy in place of f(x,y), we have for all x,y,z in L, allainxx=0,and xx=0iffxy=y3. (ax)y=a(xy),x(y+z)=xy+x4.52 Definitions A real linear space, L, equipped with an inner product, is called an inner product space. If an inner product space is also complete, it is called a Hilbert space. (In the rem
18、ainder of this section, we will always take L to be an inner productspace,butnonecessarily4.53 n1. In Rn ,thefamiliardefinition: xy x (Wecandefine | x |=(xx)1/2i 2. In l2 ,define xy xi yi 4.54. Theorem (Cauchy-Schwarz Inequality) Suppose L is an inner product Define | x |=(x x)1/2.Thenforallx,yinL,w
19、ehave |x y |x | y | 4.55.PropositionThefunction|.|definedonLby | x |=(x x)1/2 isanormfor4.56 Proposition (Bi-continuous) Suppose L is inner product space. x*,y* L,and 0, 0,suchx,y 5 HYPERLINK / 官方總站 HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK / 官方總站max| x x* |,| y HYPERLINK / 中華經(jīng)濟(jì)學(xué)習(xí)網(wǎng) HYPERLINK
20、 / 官方總站max| x x* |,| y y* | |x.y x*.y* |4.57Proposition | x +y |2 +| x y|2=2 | x|2 +2 | y|4.58 Definition. In an inner product space, we say x and y are orthogonal iff xandwrite x 4.59.PropositionIfxisorthogonaltoy,then | x +y |2=| x |2 +| y|4.60. Definitions A set of vectors, X xa | xa 0,aA, in L i
21、s said to be orthogonalsystemifffor each a,bA suchthat a b,wehave xa xb 0.IfXadditionsatisfies: (aA): xa xb 1,thenXissaidtobeanorthonormal4.61PropositionAnorthogonalsystemislinearly4.62Definition IfS isa linear subspaceof L,a subset,X, of Lwhichis ansystemiscalledanorthogonalbasisforSiff4.63 Definition If S is a linear subspace of L, we define S, the ScomplementofalinearsubspaceS,xL|yS :x y 4.64Proposition. If S isa linearsubspace, is a linear subspace of Las SAnd S S =4.65 T
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人租房合同協(xié)議書
- 原始股權(quán)轉(zhuǎn)讓協(xié)議書
- 承包注塑機(jī)維修合同
- 銷售服務(wù)費(fèi)合同
- 個(gè)人房產(chǎn)抵押合同協(xié)議書
- 擔(dān)保書之第三方信用擔(dān)保合同
- bim技術(shù)服務(wù)合同
- 2025年朔州考貨運(yùn)上崗證試答題
- 2024-2025學(xué)年高中地理課時(shí)分層作業(yè)13人類活動(dòng)地域聯(lián)系的主要方式含解析魯教版必修2
- 2024-2025學(xué)年高中政治第三單元收入與分配課題能力提升八含解析新人教版必修1
- AutoCAD 2020中文版從入門到精通(標(biāo)準(zhǔn)版)
- 《海峽兩岸經(jīng)濟(jì)合作框架協(xié)議》全文
- 紡絲原液制造工(中級(jí))理論考試復(fù)習(xí)題庫(含答案)
- ArcGIS軟件入門培訓(xùn)教程演示文稿
- 大梅沙河道河道流量水位
- 緊固件常用標(biāo)準(zhǔn)件匯總圖
- 人教版初二英語八年級(jí)上冊(cè)全冊(cè)英語單詞表
- 《紅色經(jīng)典》校本課程
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十章動(dòng)作技能的指導(dǎo)與示范
- 車輛委托保管合同 車輛委托保管協(xié)議
- 保育員教學(xué)大綱和教學(xué)計(jì)劃
評(píng)論
0/150
提交評(píng)論