




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Generative Adversarial Network (GAN)Restricted Boltzmann Machine: .tw/tlkagk/courses/MLDS_2015_2/Lecture/RBM%20(v2).ecm.mp4/index.htmlGibbs Sampling:.tw/tlkagk/courses/MLDS_2015_2/Lecture/MRF%20(v2).ecm.mp4/index.htmlOutlook:NIPS 2016 Tutorial: Generative Adversarial NetworksAuthor: Ian GoodfellowPa
2、per: /abs/1701.00160Video: /Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adversarial-NetworksYou can find tips for training GAN here: /soumith/ganhacksReviewGenerationDrawing?Writing Poems?/index.php?s=/Lot/44547Review:
3、 Auto-encoderAs close as possibleNNEncoderNNDecodercodeNNDecodercodeRandomly generate a vector as codeImage ?Review: Auto-encoderNNDecodercode2D-1.51.5NNDecoderNNDecoderReview: Auto-encoder-1.51.5NNEncoderNNDecodercodeinputoutputAuto-encoderVAENNEncoderinputNNDecoderoutputm1m2m3From a normal distrib
4、utionX+Minimize reconstruction errorexpMinimizeAuto-Encoding Variational Bayes, /abs/1312.6114Problems of VAEIt does not really try to simulate real imagesNNDecodercodeOutputAs close as possibleOne pixel difference from the targetOne pixel difference from the targetRealisticFakeThe evolution of gene
5、rationNNGeneratorv1Discri-minatorv1Real images:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3Binary ClassifierThe evolution of generationNNGeneratorv1Discri-minatorv1Real images:NNGeneratorv2Discri-minatorv2NNGeneratorv3Discri-minatorv3GAN - DiscriminatorNNGeneratorv1Real images:Discri-m
6、inatorv1image1/0(real or fake)Something like Decoder in VAERandomly sample a vector11110000GAN - GeneratorDiscri-minatorv1NNGeneratorv1Randomly sample a vector0.13Updating the parameters of generator The output be classified as “real” (as close to 1 as possible)Generator + Discriminator = a networkU
7、sing gradient descent to update the parameters in the generator, but fix the discriminator1.0v2GAN 二次元人物頭像鍊成Source of images: /p/24767059DCGAN: /carpedm20/DCGAN-tensorflowGAN 二次元人物頭像鍊成100 roundsGAN 二次元人物頭像鍊成1000 roundsGAN 二次元人物頭像鍊成2000 roundsGAN 二次元人物頭像鍊成5000 roundsGAN 二次元人物頭像鍊成10,000 roundsGAN 二次元人
8、物頭像鍊成20,000 roundsGAN 二次元人物頭像鍊成50,000 roundsBasic Idea of GANMaximum Likelihood EstimationLikelihood of generating the samplesMaximum Likelihood Estimation/generative-models/It is difficult to compute the likelihood.Basic Idea of GANGenerator GG is a function, input z, output x Given a prior distrib
9、ution Pprior(z), a probability distribution PG(x) is defined by function GDiscriminator DD is a function, input x, output scalarEvaluate the “difference” between PG(x) and Pdata(x)There is a function V(G,D). Hard to learn by maximum likelihoodBasic IdeaGiven G, what is the optimal D* maximizingGiven
10、 x, the optimal D* maximizingAssume that D(x) can have any value hereGiven x, the optimal D* maximizingFind D* maximizing: aDbD0 122Jensen-Shannon divergenceIn the end 0 log 2AlgorithmAlgorithmDecrease JS divergence(?)Decrease JS divergence(?)AlgorithmDecrease JS divergence(?)smallerDont update G to
11、o muchIn practice MaximizeMinimize Cross-entropyBinary ClassifierOutput is D(x)Minimize log D(x)If x is a positive exampleIf x is a negative exampleMinimize log(1-D(x)Positive examplesNegative examplesMaximizeMinimize Minimize Cross-entropyBinary ClassifierOutput is f(x)Minimize log f(x)If x is a po
12、sitive exampleIf x is a negative exampleMinimize log(1-f(x)AlgorithmRepeat k timesLearning DLearning GCan only find lower found ofOnly OnceObjective Function for Generatorin Real ImplementationReal implementation: label x from PG as positiveSlow at the beginningDemoThe code used in demo from:/osh/Ke
13、rasGAN/blob/master/MNIST_CNN_GAN_v2.ipynbIssue about Evaluating the DivergenceEvaluating JS divergenceMartin Arjovsky,Lon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, 2017, arXiv preprintEvaluating JS divergenceJS divergence estimated by discriminator telling litt
14、le information/abs/1701.07875Weak GeneratorStrong GeneratorDiscriminatorReason 1. Approximate by sampling10= 0log2Weaken your discriminator?Can weak discriminator compute JS divergence?DiscriminatorReason 2. the nature of data10= 0log2Usually they do not have any overlapEvaluation/post/773890/Better
15、EvaluationBetterNot really better Add NoiseAdd some artificial noise to the inputs of discriminatorMake the labels noisy for the discriminatorDiscriminator cannot perfectly separate real and generated dataNoises decay over timeMode CollapseMode Collapse Data DistributionGenerated DistributionMode Co
16、llapse What we want In reality Flaw in Optimization?Modified from Ian Goodfellows tutorialThis may not be the reason (based on Ian Goodfellows tutorial) So many GANs Modifying the Optimization of GANfGANWGANLeast-square GANLoss Sensitive GANEnergy-based GANBoundary-seeking GANUnroll GANDifferent Str
17、ucture from the Original GANConditional GANSemi-supervised GANInfoGANBiGANCycle GANDisco GANVAE-GANConditional GANMotivationGeneratorScott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016TextImageScott Reed
18、,Zeynep Akata,Santosh Mohan,Samuel Tenka,Bernt Schiele,Honglak Lee, “Learning What and Where to Draw”, NIPS 2016Han Zhang,Tao Xu,Hongsheng Li,Shaoting Zhang,Xiaolei Huang,Xiaogang Wang,Dimitris Metaxas, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks”, arXiv prepring, 2016MotivationChallengeNNTextImage(a point, not a distribution)Text: “train”NN outputConditional GANGconditionPrior distributionLearn to approxima
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025━2030年礦用篩板行業(yè)深度研究報(bào)告
- 2025━2030年天然金剛石滾輪行業(yè)深度研究報(bào)告
- 2025━2030年中國三角植絨針針套項(xiàng)目投資可行性研究報(bào)告
- 2025-2035年全球及中國貨架可用性行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景研究報(bào)告
- 2025-2035年全球及中國煤氣干燥機(jī)行業(yè)市場發(fā)展現(xiàn)狀及發(fā)展前景研究報(bào)告
- 靜療護(hù)理高質(zhì)量發(fā)展
- 針灸治療腎病
- 2025屆河北省普通高中學(xué)業(yè)水平選擇性考試模擬檢測(cè)語文試題(原卷版+解析版)
- 2025年門診醫(yī)療服務(wù)項(xiàng)目建議書
- 血透的護(hù)理要點(diǎn)
- 《光催化技術(shù)》課件
- 辦公打印機(jī)的租賃合同范文
- 危大工程監(jiān)理巡視檢查用表
- 大埔縣生活垃圾填埋場應(yīng)急加固及滲濾液處理站擴(kuò)容改造工程環(huán)境影響報(bào)告
- 餐飲行業(yè)儀容儀表標(biāo)準(zhǔn)規(guī)范
- 110kVGIS組合電器(含PT)試驗(yàn)作業(yè)指導(dǎo)書
- 進(jìn)貨檢驗(yàn)報(bào)告單
- 醫(yī)院外科腦疝患者的應(yīng)急預(yù)案演練腳本
- HSK標(biāo)準(zhǔn)教程5下-課件-L1
- 調(diào)相機(jī)系統(tǒng)構(gòu)成及原理培訓(xùn)課件
- 工程量清單及招標(biāo)控制價(jià)編制服務(wù)采購實(shí)施方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論