答疑解惑:回歸分析_第1頁
答疑解惑:回歸分析_第2頁
答疑解惑:回歸分析_第3頁
答疑解惑:回歸分析_第4頁
答疑解惑:回歸分析_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、PAGE6回歸分析答疑解惑一回歸含義探究“回歸”一詞是由英國生物學家在研究人體身高的遺傳問題時首先提出的。如根據(jù)遺傳學的觀點,子輩的身高受父輩影響,以X記父輩身高,Y記子輩身高。雖然子輩身高一般受父輩影響,但同樣身高的父親,其子身高并不一致,因此,X和Y之間存在一種相關(guān)關(guān)系。一般而言,父輩身高者,其子輩身高也高依此推論祖祖輩輩遺傳下來,身高必然向兩極分化,而事實上并非如此,顯然有一種力量將身高拉向中心,即子輩的身高有向中心回歸的特點,“回歸”一詞即源于此。不過,現(xiàn)代回歸分析雖然沿用了“回歸”一詞,但內(nèi)容已有很大變化,它是一種應(yīng)用于許多領(lǐng)域的廣泛的分析研究方法,在經(jīng)濟理論研究和實證研究中也發(fā)揮著

2、重要作用。二如何認識相關(guān)關(guān)系研究兩個變量間的相關(guān)關(guān)系是學習本節(jié)的目的。對于相關(guān)關(guān)系我們可以從下三個方面加以認識:(1)相關(guān)關(guān)系與函數(shù)關(guān)系不同。函數(shù)關(guān)系中的兩個變量間是一種確定性關(guān)系。例如正方形面積S與邊長之間的關(guān)系就是函數(shù)關(guān)系。即對于邊長的每一個確定的值,都有面積S的惟一確定的值與之對應(yīng)。相關(guān)關(guān)系是一種非確定性關(guān)系,即相關(guān)關(guān)系是非隨機變量與隨機變量之間的關(guān)系。例如人的身高與年齡;商品的銷售額與廣告費等等都是相關(guān)關(guān)系(2)函數(shù)關(guān)系是一種因果關(guān)系,而相關(guān)關(guān)系不一定是因果關(guān)系,也可能是伴隨關(guān)系。例如有人發(fā)現(xiàn),對于在校兒童,身高與閱讀技能有很強的相關(guān)關(guān)系。然而學會新詞并不能使兒童馬上長高,而是涉及到第

3、三個因素年齡,當兒童長大一些,他們的閱讀能力會提高而且由于長大身高也會高些。(3)函數(shù)關(guān)系與相關(guān)關(guān)系之間有著密切聯(lián)系,在一定的條件下可以相互轉(zhuǎn)化。例如正方形面積S與其邊長間雖然是一種確定性關(guān)系,但在每次測量邊長時,由于測量誤差等原因,其數(shù)值大小又表現(xiàn)出一種隨機性。而對于具有線性關(guān)系的兩個變量來說,當求得其回歸直線后,我們又可以用一種確定性的關(guān)系對這兩個變量間的關(guān)系進行估計。相關(guān)關(guān)系在現(xiàn)實生活中大量存在,從某種意義上講,函數(shù)關(guān)系是一種理想的關(guān)系模型,而相關(guān)關(guān)系是一種更為一般的情況。因此研究相關(guān)關(guān)系,不僅可使我們處理更為廣泛的數(shù)學應(yīng)用問題,還可使我們對函數(shù)關(guān)系的認識上升到一個新的高度。三認識回歸分

4、析應(yīng)注意的幾個方面現(xiàn)階段所研究的回歸分析是回歸分析中最簡單,也是最基本的一種類型元線性回歸分析回歸分析是通過一個變量或一些變量的變化解釋另一變量的變化對于線性回歸分析,我們要注意以下幾個方面:(1)回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的方法。兩個變量具有相關(guān)關(guān)系是回歸分析的前提。(2)散點圖是定義在具有相關(guān)系的兩個變量基礎(chǔ)上的,對于性質(zhì)不明確的兩組數(shù)據(jù),可先作散點圖,在圖上看它們有無關(guān)系,關(guān)系的密切程度,然后再進行相關(guān)回歸分析。(3)求回歸直線方程,首先應(yīng)注意到,只有在散點圖大至呈線性時,求出的回歸直線方程才有實際意義,否則,求出的回歸直線方程毫無意義。四應(yīng)用回歸分析解決問題的一般步

5、驟首先,根據(jù)理論和對問題的分析判斷,將變量分為自變量和因變量;其次,設(shè)法找出合適的數(shù)學方程式(即回歸模型)描述變量間的關(guān)系;由于涉及到的變量具有不確定性,接著還要對回歸模型進行統(tǒng)計檢驗;統(tǒng)計檢驗通過后,最后是利用回歸模型,根據(jù)自變量去估計、預測因變量其具體步驟是:收集數(shù)據(jù)作散點圖求回歸直線方程利用方程進行預報五析案例探問題案例:女大學生的身高與體重從某大學中隨機選取8名女大學生,其身高和體重數(shù)據(jù)如下表所示:編號12345678身高/cm165165157170175165155170體重/g4857505464614359求根據(jù)一名女大學生的身高預報她的體重的回歸方程,并預報一名身高為172c

6、m的女大學生的體重解:1、選取身高為自變量,體重為因變量y,作散點圖:2、由散點圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。3、從散點圖還看到,樣本點散布在某一條直線的附近,而不是在一條直線上如下圖,所以不能用一次函數(shù)y=ba描述它們關(guān)系。我們可以用線性回歸模型來表示:y=ba,其中a和b為模型的未知參數(shù),稱為隨機誤差。根據(jù)最小二乘法估計和就是未知參數(shù)a和b的最好估計,于是有b=所以回歸方程是所以,對于身高為172cm的女大學生,由回歸方程可以預報其體重為對以上案例提出問題問題1身高為172cm的女大學生的體重一定是60.316kg嗎答:身高為172cm的

7、女大學生的體重不一定是,但一般可以認為她的體重在60.316kg左右。問題2產(chǎn)生隨機誤差項的原因是什么隨機誤差的、其它因素的影響:影響身高y的因素不只是體重,可能還包括遺傳基因、飲食習慣、生長環(huán)境等因素;2、用線性回歸模型近似真實模型所引起的誤差;3、身高y的觀測誤差問題3線性回歸模型與一次函數(shù)的不同:事實上,觀察上述散點圖,我們可以發(fā)現(xiàn)女大學生的體重和身高之間的關(guān)系并不能用一次函數(shù)來嚴格刻畫(因為所有的樣本點不共線,所以線性模型只能近似地刻畫身高和體重的關(guān)系)在數(shù)據(jù)表中身高為165cm的3名女大學生的體重分別為48g、57g和61g,如果能用一次函數(shù)來描述體重與身高的關(guān)系,那么身高為165cm的3名女在學生的體重應(yīng)相同這就說明體重不僅受身高的影響還受其他因素的影響,把這種影響的結(jié)果(稱為隨機誤差或殘差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論