下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheParadoxesofEubulidesofMiletus(4thcenturyb.c.)3.TheHeap
(a.k.a.TheBaldMan,a.k.a.TheSoritesParadox)TheParadoxConsiderthisobvioustruth:additionof1kernelofwheatistooinsignificanttoturnwhatisnotaheapofwheatintoaheapofwheatand,similarly,subtractionof1kernelofwheatistooinsignificanttoturnwhatisaheapofwheatintowhatisnotaheapofwheat.TheobvioustruthhastheparadoxicalconsequencesshownbythefollowingSoriticalargument:1grainofwheatisnotaheap.If1grainofwheatisnotaheap,then2grainsofwheatarenotaheap.[bytheobvioustruth]If2grainsofwheatarenotaheap,then3grainsofwheatarenotaheap.[bytheobvioustruth]10,000.If9,999grainsofwheatarenotaheap,then10,000grainsarenotaheap. [bytheobvioustruth]Therefore,10,000grainsofwheatarenotaheap.Theargumentisvalid.(Ineffect,itjustuses10,000applicationsofthetruth-preservinginferencerulemodusponens.)And,itspremisesallseemtobetrue:(1)isclearlytrue;(2)istruebytheobvioustruththatadditionof1littlekernelcan’tturnanon-heapintoaheap;and(3)(10,000)aretrueforthesamereason.But,theconclusionisobviouslyfalse.So,theparadoxhereis,again,aseeminglysoundargumentwithafalseconclusion.TheHeartoftheMatterTheheartoftheHeapparadoxiscapturedinthreeassertionseachofwhichseemstrue:smallchangesdon’tmakeforadifferenceintheapplicationofsoriticalpredicateslike‘...isaheap’or‘...isbald.’largechangesdomakeforadifferenceintheapplicationofsuchpredicates,alargechangeisnothingmorethanalargenumberofsmallchanges.ButastheSoriticalargumentseemstoshow,thetriad(a)-(c)isinconsistent,i.e.,allofitsmemberscannotbetruetogether.FormalizationLet’ssymbolizetheSoriticalargument:Fa1Fa1nFa2Fa2nFa3...n.Fan-1nFan?.?Fan‘F’isthepredicateletterforthesoriticalpredicate—inthiscase‘...isnotaheap’一and‘a(chǎn)」,‘a(chǎn)2’,etc.areindividualconstantsdenotingtheobjectstowhichthepredicateapplies,e.g.,1kernelofwheat,acollectionof2kernelsofwheat,etc.ThegeneralconditionsforaSoritesargumentare:theseriesa「anisorderedconsecutively(e.g.byincreasingnumberofkernels),‘F’satisfiesthefollowingconditions:itistrueofa1itisfalseofaneachadjacentpairintheseries,a.anda.,aresimilarenoughsoasnottodifferinrespectof‘F.’ JJ+[Thus,wecanconstructamoreemotionallycompellingSoritesargumentwith‘F’interpretedas‘isnotaperson’andtheseriesa「andenotingthestagesofembryonicdevelopmentfromzygotetoinfant.]Ul.VaguenessThesourceoftheSoritesparadoxisthesemanticphenomenonofvagueness:aword’sorconcepfshavingagrayareaofapplication,i.e.,borderlineorindeterminatecases,circumstancesinwhichthewordorconceptneitherclearlyappliesnorclearlyfailstoapply.Ifeverywordorconceptwereaspreciseas,say,rationalnumber,whichhasnoborderlinecases,thentherewouldbenoSoritesparadox.Thatis,iftherewereasharpboundaryfor‘.isnotaheap’一anumberksuchthatkgrainsclearlywerenotaheapbutk+1grainsclearlywereaheap—thenoneofthepremisesintheSoritesargumentwouldbefalse.Specifically,thek+1stpremise—FaknFak+1—wouldbefalse,for'Faj(‘kgrainsofwheatisnotaheap’)wouldbetruebut‘Fak+1’(‘k+1grainsofwheatisnotaheap’)wouldbefalse.Remember,aconditionalwithatrueantecedentandafalseconsequentisfalse.So,we’dnolongerhaveasoundargumentwithafalseconclusion.
Remember,aconditionalwithatrueantecedentandafalseconsequentisfalse.But,‘...isnotaheap,’‘...isbald,’etc.certainlydon’tseemtohavesuchsharpboundaries.So,weseemstuckwiththeparadox.ReactionsNaturalLanguageisn’tLogicalOneproposalistodenythatformallogiccharacterizesnaturallanguage—atleastuntilitsvaguepredicatesarereplacedwithpreciseones—forthesymboliclanguagesofformallogicaredeliberatelyprecisewhilenaturallanguagesarelousywithvagueness.ThiswasFrege’sattitudeaswellasRussell’s.Idon’tcareforthisapproach.For,argumentswhosepremisesandconclusionsareexpressedinnaturallanguagecanbevalidornot.Indeed,naturallanguageargumentsconstructedwithvaguepredicatescanbevalidornot.Andvalidityiscertainlywithinthescopeofformallogic.IgnoranceofSharpMeaningsAnotherproposalistoclaimthat,despiteappearances,oneofthepremisesinSoriticalargumentsisreallyfalse.Itfollowsthattherereallyisasharpboundaryforeverysoriticalpredicatelike‘...isaheap’一somespecificnumberwhichsharplydistinguishesheapsfromnon-heaps.Todefendthisidea,letmerecasttheformoftheSoriticalargumentfromaseriesofconditionalpremisestoasingleuniversalpremise:Fa1(VFa1(Vn)(FanFaJn^^nI1??⑶Fa10,000Foranynumbern,ifthemanwithnhairsisbald,thenthemanwithn+1hairsisbald.Therefore,(3)themanwith10,000hairsonhisheadisbald.Theargumentisvalid.Since(1)isundeniablytrueand(3)isundeniablyfalse,avoidingtheparadoxrequiresthatpremise(2)befalse.Therefore:Hence:(馳?(馳?(Fa“nFa“+)Thus:[byQN][bymaterialimplicationandDeMorgan’slaw]Thatis,theredoesexistaparticularnumber,callitk,suchthatthemanwithkhairsonhisheadisbaldbutthemanwithk+1hairsisnotbald.It’sjustthatwedon’t(orcan’t)knowwhatkis.Inotherwords,therereallyarenovaguewordsorconcepts,andwhatseemslikevaguenessisnotasemanticphenomenonbutrathertheresultofourignoranceabouttheprecisemeaningsofourownwordsandconcepts.Idon’tlikethisreplyeither.Languageisourcreation,andthereisn’tmoretoitthanweputinit.So,itisveryimplausiblethatthemeaningsofourtermsshouldbesofarbeyondourknowledge.FuzzySetTheoryandFuzzyLogicThereisanintuitiveconnectionbetweenanobjecfsmembershipinasetandthetruthofasentencethatpredicatesapropertyoftheobject,viz.ifabelongstothesetofF-things—ae{x|xisF}—thenthesentence‘Fa’istrue.Intuitively,then,itseemsthatanyobjectiseitherinoroutofagivenset.Accordingtofuzzysettheory,ontheotherhand,therearean(uncountably)infinitenumberofdegreesofsetmembership,asmanydegreesastherearerealnumbersin[0,1].So,acanbecompletelynon-F,...,alittleF,...,alittlemoreF,...,prettyF,...,quiteF,...,veryF,..,orfullyF.And,therearecorrespondinglymanydegreesoftruth:ifaetodegreen{x|xisF},then‘Fa’istruetodegreen.Forexample,asamanlosesmoreandmorehair,hebecomesmoreandmorebaldandtheassertion‘Sisbald’becomesmoreandmoretrue.Intheory,theconceptofdegreesoftruthimpliesdegreesofvalidity,and,withfurtherdevelopment,thefuzzytheoristhopestoshowthattheconclusionofaSoriticalargumentdoesnotfollowfromitspremiseswithasufficientdegreeofvaliditytobeparadoxical.Iwon’tpursuethedevelopmentofthissolutionbecauseIalreadyfinditenormouslyimplausiblethatourconceptoftruthshouldbesounbelievablyrefinedastoincludeanon-denumerablyinfinitenumberofdistincttruth-values.Truth-ValueGaps.Intheclassicallogicthatwe’vestudied,therearetwo,andonlytwo,truth-values:thetrueandthefalse.Fuzzylogicisanexampleofnon-classical(ordeviant)logicofthesortcalledmany-valued.Alogicoftruth-valuegapsisadifferentsortofnon-classicallogicaltheory.Forexample,if‘71kernelsisnotaheap’isneitherclearlytruenorclearlyfalse,thenithasnotruth-value一thesentenceisatruth-valuegap.Thispromisestoresolvetheparadox,foriftherearepremisesinaSoriticalargumentthatgetnotruth-value,thentheargumentisnolongersound.However,itisnotobviousthattruth-valuegapswillresolvetheparadox.Imaginethatweadoptagappylogicaltheorywheresomesentenceswithvaguepredicates
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版委托借款合同范本
- 2024年雙方關(guān)于量子計(jì)算機(jī)技術(shù)研發(fā)合同
- 出租門面合同范本2024年
- 房地產(chǎn)項(xiàng)目聯(lián)營(yíng)開(kāi)發(fā)合同樣本
- 廣告位合作合同模板
- 2024自建房購(gòu)房合同協(xié)議書(shū)范本
- 2024報(bào)價(jià)合同格式范本質(zhì)押合同格式范本2
- 2024生鮮品采購(gòu)合同范本
- 2024購(gòu)銷合同范本(手機(jī)美容保護(hù)膜系統(tǒng)購(gòu)銷)范文
- 房產(chǎn)中介合同樣本
- (完整版)病例演講比賽PPT模板
- 直播合作協(xié)議
- 社科類課題申報(bào)工作輔導(dǎo)報(bào)告課件
- 頭痛的診治策略講課課件
- 沙利文-內(nèi)窺鏡行業(yè)現(xiàn)狀與發(fā)展趨勢(shì)藍(lán)皮書(shū)
- 國(guó)家開(kāi)放大學(xué)一網(wǎng)一平臺(tái)電大《建筑測(cè)量》實(shí)驗(yàn)報(bào)告1-5題庫(kù)
- 規(guī)范診療服務(wù)行為專項(xiàng)整治行動(dòng)自查表
- (新平臺(tái))國(guó)家開(kāi)放大學(xué)《建設(shè)法規(guī)》形考任務(wù)1-4參考答案
- 精益工廠布局及精益物流規(guī)劃課件
- 注射液無(wú)菌檢查的方法學(xué)驗(yàn)證方案
- 2023年口腔醫(yī)學(xué)期末復(fù)習(xí)-牙周病學(xué)(口腔醫(yī)學(xué))考試歷年真題薈萃帶答案
評(píng)論
0/150
提交評(píng)論