版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣102.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π3.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°5.如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c6.如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A、B的坐標(biāo)分別為(,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標(biāo)為()A. B. C. D.7.今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設(shè)他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是()A.小明中途休息用了20分鐘B.小明休息前爬山的平均速度為每分鐘70米C.小明在上述過程中所走的路程為6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度8.如圖,這是根據(jù)某班40名同學(xué)一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學(xué)一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.59.若x,y的值均擴(kuò)大為原來的3倍,則下列分式的值保持不變的是()A. B. C. D.10.如果,那么代數(shù)式的值是()A.6 B.2 C.-2 D.-6二、填空題(共7小題,每小題3分,滿分21分)11.如圖,反比例函數(shù)y=的圖象上,點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結(jié)BP,在點A運動過程中,當(dāng)BP平分∠ABC時,點A的坐標(biāo)為_____.12.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個數(shù)中的其中某一個,若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個人玩這個游戲,得出他們”心有靈犀”的概率為_____.13.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.14.寫出一個比大且比小的有理數(shù):______.15.在平面直角坐標(biāo)系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當(dāng)P點坐標(biāo)為_____時,△PAB的面積最?。?6.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.17.已知是二元一次方程組的解,則m+3n的立方根為__.三、解答題(共7小題,滿分69分)18.(10分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點D在線段BC上時,證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當(dāng)點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.19.(5分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。?)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.20.(8分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.21.(10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標(biāo).22.(10分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關(guān)于m的函數(shù)關(guān)系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當(dāng)以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標(biāo).23.(12分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關(guān)于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當(dāng)20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達(dá)式;乙出發(fā)后多長時間與甲在途中相遇?若當(dāng)甲到達(dá)景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?24.(14分)知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
本題根據(jù)科學(xué)記數(shù)法進(jìn)行計算.【詳解】因為科學(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.2、B【解析】
先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應(yīng)用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關(guān)鍵.3、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標(biāo)的相關(guān)知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標(biāo)相等或互為相反數(shù).4、A【解析】
先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質(zhì),熟練掌握這一點是解題的關(guān)鍵.5、A【解析】
觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結(jié)論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關(guān)鍵.6、B【解析】
連接OO′,作O′H⊥OA于H.只要證明△OO′A是等邊三角形即可解決問題.【詳解】連接OO′,作O′H⊥OA于H,在Rt△AOB中,∵tan∠BAO==,∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等邊三角形,∵O′H⊥OA,∴OH=,∴OH′=OH=,∴O′(,),
故選B.【點睛】本題考查翻折變換、坐標(biāo)與圖形的性質(zhì)、等邊三角形的判定和性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵是發(fā)現(xiàn)特殊三角形,利用特殊三角形解決問題.7、C【解析】
根據(jù)圖像,結(jié)合行程問題的數(shù)量關(guān)系逐項分析可得出答案.【詳解】從圖象來看,小明在第40分鐘時開始休息,第60分鐘時結(jié)束休息,故休息用了20分鐘,A正確;小明休息前爬山的平均速度為:(米/分),B正確;小明在上述過程中所走的路程為3800米,C錯誤;小明休息前爬山的平均速度為:70米/分,大于休息后爬山的平均速度:米/分,D正確.故選C.考點:函數(shù)的圖象、行程問題.8、A【解析】
根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當(dāng)作中位數(shù).9、D【解析】
根據(jù)分式的基本性質(zhì),x,y的值均擴(kuò)大為原來的3倍,求出每個式子的結(jié)果,看結(jié)果等于原式的即是答案.【詳解】根據(jù)分式的基本性質(zhì),可知若x,y的值均擴(kuò)大為原來的3倍,A、,錯誤;B、,錯誤;C、,錯誤;D、,正確;故選D.【點睛】本題考查的是分式的基本性質(zhì),即分子分母同乘以一個不為0的數(shù),分式的值不變.此題比較簡單,但計算時一定要細(xì)心.10、A【解析】【分析】將所求代數(shù)式先利用單項式乘多項式法則、平方差公式進(jìn)行展開,然后合并同類項,最后利用整體代入思想進(jìn)行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數(shù)式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進(jìn)行解題是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進(jìn)而可得出AE=OF、OE=CF,根據(jù)角平分線的性質(zhì)可得出,設(shè)點A的坐標(biāo)為(a,)(a>0),由可求出a值,進(jìn)而得到點A的坐標(biāo).詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設(shè)點A的坐標(biāo)為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標(biāo)為(,),故答案為:((,)).點睛:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)以及等腰直角三角形性質(zhì)的綜合運用,構(gòu)造全等三角形,利用全等三角形的對應(yīng)邊相等是解題的關(guān)鍵.12、【解析】
利用P(A)=,進(jìn)行計算概率.【詳解】從0,1,2,3四個數(shù)中任取兩個則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點睛】本題考查了概率的簡單計算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.13、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.14、2【解析】
直接利用接近和的數(shù)據(jù)得出符合題意的答案.【詳解】解:到之間可以為:2(答案不唯一),故答案為:2(答案不唯一).【點睛】此題考查無理數(shù)的估算,解題的關(guān)鍵在于利用題中所給有理數(shù)的大小求符合題意的答案.15、(-1,2)【解析】
因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯(lián)立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設(shè)平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標(biāo)為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數(shù)圖象上點的坐標(biāo)特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關(guān)鍵.16、1【解析】
底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【詳解】試題解析:①當(dāng)腰是4cm,底邊是9cm時:不滿足三角形的三邊關(guān)系,因此舍去.②當(dāng)?shù)走吺?cm,腰長是9cm時,能構(gòu)成三角形,則其周長=4+9+9=1cm.故填1.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進(jìn)行解答.17、3【解析】
把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.三、解答題(共7小題,滿分69分)18、探究:證明見解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;
應(yīng)用:先算出BC,進(jìn)而算出BD,再用勾股定理求出DE,即可得出結(jié)論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
應(yīng)用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根據(jù)勾股定理得,DE=,
∴△DCE的周長為CD+CE+DE=2+
故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案為BC=CE-CD.19、(1)證明見解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質(zhì)和判定等知識點,能求出CF的長是解答此題的關(guān)鍵.20、(1)證明:∵ABCD是平行四邊形∴AB=CDAB∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90∴△ABE≌△CDF∴BE=DF【解析】證明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………4分∵AE⊥BDCF⊥BD∴∠AEB=∠CFD=900……………………5分∵AB=CD∴△ABE≌△CDF…………6分∴BE=DF21、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)將A(-1,0),B(0,1),C(1,0)三點的坐標(biāo)代入y=ax2+bx+c,運用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點的坐標(biāo)為(x,-x2-2x+1),E點的坐標(biāo)為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當(dāng)x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進(jìn)而得到P點的坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點的坐標(biāo)為(x,﹣x2﹣2x+1),E點的坐標(biāo)為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當(dāng)x=﹣時,PE最大,△PDE的周長也最大.當(dāng)x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標(biāo)為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強,難度適中.22、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】
(1)把點A的坐標(biāo)代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點的坐標(biāo),可求得直線AC的函數(shù)解析式;(1)先過點D作DH⊥x軸于點H,運用割補法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據(jù)此列式計算化簡就可求得S關(guān)于m的函數(shù)關(guān)系;(3)由于AC確定,可分AC是平行四邊形的邊和對角線兩種情況討論,得到點E與點C的縱坐標(biāo)之間的關(guān)系,然后代入拋物線的解析式,就可得到滿足條件的所有點E的坐標(biāo).【詳解】(1)∵A(﹣4,0)在二次函數(shù)y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數(shù)解析式為y=﹣x1﹣x+1;∴點C的坐標(biāo)為(0,1),設(shè)直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數(shù)解析式為:;(1)∵點D(m,n)是拋物線在第二象限的部分上的一動點,∴D(m,﹣m1﹣m+1),過點D作DH⊥x軸于點H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當(dāng)yE=1時,解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級音樂上教案
- 上海市縣(2024年-2025年小學(xué)五年級語文)人教版期末考試(上學(xué)期)試卷及答案
- 一年級數(shù)學(xué)(上)計算題專項練習(xí)集錦
- DB11T 1122-2014 養(yǎng)老機(jī)構(gòu)老年人健康檔案技術(shù)規(guī)范
- 消防電各設(shè)備技術(shù)規(guī)格書
- 福建省泉州市晉江市安海鎮(zhèn)五校2024-2025學(xué)年九年級上學(xué)期期中化學(xué)試題含答案
- 墨水筆的充墨筆芯產(chǎn)業(yè)規(guī)劃專項研究報告
- 信紙夾產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 嬰兒抱枕產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 化妝用著色制劑產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 期中模擬檢測(試題) 2024-2025學(xué)年四年級上冊數(shù)學(xué)北師大版
- 乙醇鈉團(tuán)體標(biāo)準(zhǔn)
- 2023年國家公務(wù)員錄用考試《行測》副省級卷-解析
- 2024年銀行考試-招商銀行考試近5年真題附答案
- 2024人教新版七年級上冊英語單詞英譯漢默寫表
- 2024年上海市普通高中學(xué)業(yè)水平等級性考試(物理)附試卷分析
- 教育機(jī)構(gòu)線上教育平臺建設(shè)方案
- 服務(wù)營銷《(第6版)》 課件 第5章 服務(wù)產(chǎn)品與服務(wù)品牌
- 甘肅省慶陽市2023-2024學(xué)年六年級上學(xué)期語文期中試卷(含答案)
- 五年級語文上冊第四單元綜合素質(zhì)達(dá)標(biāo)作業(yè)
- 廣州中醫(yī)藥大學(xué)-中藥學(xué)模擬試題
評論
0/150
提交評論