版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}2.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.23.設(shè)復(fù)數(shù),則=()A.1 B. C. D.4.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.985.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)6.已知函數(shù),若,則的值等于()A. B. C. D.7.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)8.已知向量,,若,則()A. B. C. D.9.已知分別為雙曲線的左、右焦點(diǎn),過的直線與雙曲線的左、右兩支分別交于兩點(diǎn),若,則雙曲線的離心率為()A. B.4 C.2 D.10.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減11.復(fù)數(shù)的虛部為()A. B. C.2 D.12.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知函數(shù),則不等式的解集為____________.14.己知函數(shù),若曲線在處的切線與直線平行,則__________.15.正方體中,是棱的中點(diǎn),是側(cè)面上的動(dòng)點(diǎn),且平面,記與的軌跡構(gòu)成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個(gè)側(cè)面中,與所成的銳二面角相等的側(cè)面共四個(gè).其中正確命題的序號(hào)是________.(寫出所有正確命題的序號(hào))16.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.18.(12分)如圖,在三棱柱中,,,,為的中點(diǎn),且.(1)求證:平面;(2)求銳二面角的余弦值.19.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.21.(12分)對(duì)于很多人來說,提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63522.(10分)第十四屆全國冬季運(yùn)動(dòng)會(huì)召開期間,某校舉行了“冰上運(yùn)動(dòng)知識(shí)競賽”,為了解本次競賽成績情況,從中隨機(jī)抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機(jī)抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識(shí)”志愿活動(dòng),并指定2名負(fù)責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的概率.組號(hào)分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計(jì)1.00
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】
解出集合A和B即可求得兩個(gè)集合的并集.【題目詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【答案點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.2、B【答案解析】由題意或4,則,故選B.3、A【答案解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡即可求解.【題目詳解】復(fù)數(shù),則故選:A.【答案點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡求值,屬于基礎(chǔ)題.4、C【答案解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【題目詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【答案點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.5、C【答案解析】
利用終邊相同的角的公式判斷即得正確答案.【題目詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【答案點(diǎn)睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.6、B【答案解析】
由函數(shù)的奇偶性可得,【題目詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【答案點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)7、D【答案解析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【題目詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【答案點(diǎn)睛】本題考查了折線圖,意在考查學(xué)生的理解能力.8、A【答案解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【題目詳解】由題意得,,,,解得.故選A.【答案點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.9、A【答案解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【題目詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【答案點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點(diǎn)到焦點(diǎn)的距離都用表示出來,從而再由勾股定理建立的關(guān)系.10、C【答案解析】
先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【題目詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【答案點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.11、D【答案解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,化簡出,即可得出虛部.【題目詳解】解:=,故虛部為-2.故選:D.【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念.12、A【答案解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【題目詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【答案點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
易知函數(shù)的定義域?yàn)?,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.14、【答案解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【題目詳解】因?yàn)楹瘮?shù),所以,所以,解得.故答案為:【答案點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、①②③④【答案解析】
取中點(diǎn),中點(diǎn),中點(diǎn),先利用中位線的性質(zhì)判斷點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質(zhì)即可判斷;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,進(jìn)而求解;③由,取為中點(diǎn),則,則即為與平面所成的銳二面角,進(jìn)而求解;④由平行的性質(zhì)及圖形判斷即可.【題目詳解】取中點(diǎn),連接,則,所以,所以平面即為平面,取中點(diǎn),中點(diǎn),連接,則易證得,所以平面平面,所以點(diǎn)的運(yùn)動(dòng)軌跡為線段,平面即為平面.①取為中點(diǎn),因?yàn)槭堑妊切?所以,又因?yàn)?所以,故①正確;②直線與直線所成角即為直線與直線所成角,設(shè)正方體的棱長為2,當(dāng)點(diǎn)為中點(diǎn)時(shí),直線與直線所成角最小,此時(shí),;當(dāng)點(diǎn)與點(diǎn)或點(diǎn)重合時(shí),直線與直線所成角最大,此時(shí),所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點(diǎn),則即為與平面所成的銳二面角,,所以③正確;④正方體的各個(gè)側(cè)面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【答案點(diǎn)睛】本題考查直線與平面的空間位置關(guān)系,考查異面直線成角,二面角,考查空間想象能力與轉(zhuǎn)化思想.16、2【答案解析】
運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【題目詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【答案點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【答案解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得成立.【題目詳解】(1)∵函數(shù)的定義域?yàn)?,由,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個(gè)零點(diǎn):∵,所以函數(shù)在區(qū)間內(nèi)有零點(diǎn),∵,函數(shù)在區(qū)間上沒有零點(diǎn),故函數(shù)只有一個(gè)零點(diǎn).(2)證明:函數(shù),則當(dāng)時(shí),,不符合題意;當(dāng)時(shí),令,則,所以在上單調(diào)增函數(shù),而,又∵區(qū)間上不單調(diào),所以存在,使得在上有一個(gè)零點(diǎn),即,所以,且,即兩邊取自然對(duì)數(shù),得即,要證,即證,先證明:,令,則∴在上單調(diào)遞增,即,∴①在①中令,∴令∴,即即,∴.【答案點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1)證明見解析;(2).【答案解析】
(1)證明后可得平面,從而得,結(jié)合已知得線面垂直;(2)以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),寫出各點(diǎn)坐標(biāo),求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【題目詳解】(1)證明:因?yàn)椋瑸橹悬c(diǎn),所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),則,,,,,.設(shè)平面的法向量,則,即,令,則;設(shè)平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【答案點(diǎn)睛】本題考查證明線面垂直,解題時(shí)注意線面垂直與線線垂直的相互轉(zhuǎn)化.考查求二面角,求空間角一般是建立空間直角坐標(biāo)系,用向量法易得結(jié)論.19、(1);(2)【答案解析】
(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【題目詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【答案點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值,從而求出函數(shù)最值.20、(1)證明見解析(2)【答案解析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【題目詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【答案點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.21、(1)不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見解析,,【答案解析】
(1)計(jì)算再對(duì)照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡單的數(shù)字電路課程設(shè)計(jì)
- 2024年度快遞配送服務(wù)與消費(fèi)者權(quán)益保護(hù)合同3篇
- 椰子糖食品工廠課程設(shè)計(jì)
- 盲童繪畫課程設(shè)計(jì)
- 溢洪道安全檢測(cè)課程設(shè)計(jì)
- 2025版知識(shí)產(chǎn)權(quán)運(yùn)營公司勞動(dòng)合同及專利權(quán)歸屬合同3篇
- 網(wǎng)上書店課程設(shè)計(jì)x
- 現(xiàn)代精神心理課程設(shè)計(jì)
- 2024房地產(chǎn)聯(lián)合開發(fā)框架協(xié)議
- 2024泰州電力行業(yè)員工勞動(dòng)合同標(biāo)準(zhǔn)版3篇
- CRF病例報(bào)告表模板
- 路燈安裝施工檢驗(yàn)批質(zhì)量檢驗(yàn)記錄表
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫380題(含答案)
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 貴州省貴陽市英語小學(xué)六年級(jí)上學(xué)期試卷及答案指導(dǎo)(2024年)
- 2024年輕質(zhì)隔墻板采購安裝合同
- Unit 8 The Spring Festival Part A (教學(xué)設(shè)計(jì))-2024-2025學(xué)年閩教版英語四年級(jí)上冊(cè)
- 部編新人教版小學(xué)語文6六年級(jí)上冊(cè)(全冊(cè))教案設(shè)計(jì)
- 山東省濟(jì)南市2023-2024學(xué)年高二年級(jí)上冊(cè)1月期末英語試題(解析版)
- 初中體育教案【完整版】七年級(jí)
- 2024-2030年中國城市供熱行業(yè)市場前景預(yù)測(cè)及發(fā)展趨勢(shì)預(yù)判報(bào)告
評(píng)論
0/150
提交評(píng)論