2022-2023學年江蘇省無錫市南長實驗、僑誼教育集團數(shù)學九上期末綜合測試試題含解析_第1頁
2022-2023學年江蘇省無錫市南長實驗、僑誼教育集團數(shù)學九上期末綜合測試試題含解析_第2頁
2022-2023學年江蘇省無錫市南長實驗、僑誼教育集團數(shù)學九上期末綜合測試試題含解析_第3頁
2022-2023學年江蘇省無錫市南長實驗、僑誼教育集團數(shù)學九上期末綜合測試試題含解析_第4頁
2022-2023學年江蘇省無錫市南長實驗、僑誼教育集團數(shù)學九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.在△中,∠,如果,,那么cos的值為()A. B.C. D.2.如圖,AC是⊙O的內(nèi)接正四邊形的一邊,點B在弧AC上,且BC是⊙O的內(nèi)接正六邊形的一邊.若AB是⊙O的內(nèi)接正n邊形的一邊,則n的值為()A.6 B.8 C.10 D.123.已知是實數(shù),則代數(shù)式的最小值等于()A.-2 B.1 C. D.4.如圖所示,將一個含角的直角三角板繞點逆時針旋轉,點的對應點是點,若點、、在同一條直線上,則三角板旋轉的度數(shù)是()A. B. C. D.5.在學校組織的實踐活動中,小新同學用紙板制作了一個圓錐模型,它的底面半徑為1,母線長為1.則這個圓錐的側面積是()A.4π B.1π C.π D.2π6.如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長是()A. B. C. D.7.如圖,的半徑為2,弦,點P為優(yōu)弧AB上一動點,,交直線PB于點C,則的最大面積是

A. B.1 C.2 D.8.下列圖形中,繞某個點旋轉72度后能與自身重合的是()A. B.C. D.9.在一個不透明的箱子中有3張紅卡和若干張綠卡,它們除了顏色外其他完全相同,通過多次抽卡試驗后發(fā)現(xiàn),抽到綠卡的概率穩(wěn)定在75%附近,則箱中卡的總張數(shù)可能是()A.1張 B.4張 C.9張 D.12張10.拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示.下列敘述中:①;②關于的方程的兩個根是;③;④;⑤當時,隨增大而增大.正確的個數(shù)是()A.4 B.3 C.2 D.111.已知線段CD是由線段AB平移得到的,點A(–1,4)的對應點為C(4,7),則點B(–4,–1)的對應點D的坐標為()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)12.已知二次函數(shù)的圖象經(jīng)過點,當自變量的值為時,函數(shù)的值為()A. B. C. D.二、填空題(每題4分,共24分)13.拋物線y=x2+2x與y軸的交點坐標是_____.14.拋物線y=x2+2x﹣3的對稱軸是_____.15.已知實數(shù)m,n滿足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求的值是_____.16.在?ABCD中,∠ABC的平分線BF交對角線AC于點E,交AD于點F.若=,則的值為_____.17.如圖,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,則cos∠AOB的值等于___________.18.如圖,,分別是邊,上的點,,若,,,則______.三、解答題(共78分)19.(8分)某玩具商店以每件60元為成本購進一批新型玩具,以每件100元的價格銷售則每天可賣出20件,為了擴大銷售,增加盈利,盡快減少庫存,商店決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):若每件玩具每降價1元,則每天可多賣2件.(1)若商店打算每天盈利1200元,每件玩具的售價應定為多少元?(2)若商店為追求效益最大化,每件玩具的售價定為多少元時,商店每天盈利最多?最多盈利多少元?20.(8分)解方程:+3x-4=021.(8分)如圖,在平面直角坐標系中,拋物線的頂點為,且經(jīng)過點與軸交于點,連接,,.(1)求拋物線對應的函數(shù)表達式;(2)點為該拋物線上點與點之間的一動點.①若,求點的坐標.②如圖②,過點作軸的垂線,垂足為,連接并延長,交于點,連接延長交于點.試說明為定值.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作EF⊥AC于點E,交AB的延長線于點F.(1)判斷直線DE與⊙O的位置關系,并說明理由;(2)如果AB=5,BC=6,求DE的長.23.(10分)已知拋物線y=﹣x2+mx+m﹣2的頂點為A,且經(jīng)過點(3,﹣3).(1)求拋物線的解析式及頂點A的坐標;(2)將原拋物線沿射線OA方向進行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點,如圖,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.24.(10分)如圖,已知二次函數(shù)y=ax1+4ax+c(a≠0)的圖象交x軸于A、B兩點(A在B的左側),交y軸于點C.一次函數(shù)y=﹣x+b的圖象經(jīng)過點A,與y軸交于點D(0,﹣3),與這個二次函數(shù)的圖象的另一個交點為E,且AD:DE=3:1.(1)求這個二次函數(shù)的表達式;(1)若點M為x軸上一點,求MD+MA的最小值.25.(12分)已知關于的一元二次方程.(1)請判斷是否可為此方程的根,說明理由.(2)是否存在實數(shù),使得成立?若存在,請求出的值;若不存在,請說明理由.26.如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F(xiàn)分別是BD,AD上的點,取EF中點G,連接DG并延長交AB于點M,延長EF交AC于點N。(1)求證:∠FAB和∠B互余;(2)若N為AC的中點,DE=2BE,MB=3,求AM的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】先利用勾股定理求出AB的長度,從而可求.【詳解】∵∠,,∴∴故選A【點睛】本題主要考查勾股定理及余弦的定義,掌握余弦的定義是解題的關鍵.2、D【分析】連接AO、BO、CO,根據(jù)中心角度數(shù)=360°÷邊數(shù)n,分別計算出∠AOC、∠BOC的度數(shù),根據(jù)角的和差則有∠AOB=30°,根據(jù)邊數(shù)n=360°÷中心角度數(shù)即可求解.【詳解】連接AO、BO、CO,∵AC是⊙O內(nèi)接正四邊形的一邊,∴∠AOC=360°÷4=90°,∵BC是⊙O內(nèi)接正六邊形的一邊,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故選:D.【點睛】本題考查正多邊形和圓,解題的關鍵是根據(jù)正方形的性質(zhì)、正六邊形的性質(zhì)求出中心角的度數(shù).3、C【分析】將代數(shù)式配方,然后利用平方的非負性即可求出結論.【詳解】解:====∵∴∴代數(shù)式的最小值等于故選C.【點睛】此題考查的是利用配方法求最值,掌握完全平方公式是解決此題的關鍵.4、D【分析】根據(jù)旋轉角的定義,兩對應邊的夾角就是旋轉角,即可求解.【詳解】解:旋轉角是故選:D.【點睛】本題考查的是旋轉的性質(zhì),掌握對應點與旋轉中心所連線段的夾角等于旋轉角是解題的關鍵.5、B【分析】根據(jù)圓錐的側面積,代入數(shù)進行計算即可.【詳解】解:圓錐的側面積2π×1×1=1π.故選:B.【點睛】本題主要考查了圓錐的計算,掌握圓錐的計算是解題的關鍵.6、C【分析】根據(jù)相似三角形的判定定理求出△ABP∽△PCD,再根據(jù)相似三角形對應邊的比等于相似比的平方解答.【詳解】∵△ABC為等邊三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∵AB=BC=3,BP=1,∴PC=2,∴,∴CD=,故選C.【點睛】本題考查了等邊三角形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題的關鍵.7、B【分析】連接OA、OB,如圖1,由可判斷為等邊三角形,則,根據(jù)圓周角定理得,由于,所以,因為,則要使的最大面積,點C到AB的距離要最大;由,可根據(jù)圓周角定理判斷點C在上,如圖2,于是當點C在半圓的中點時,點C到AB的距離最大,此時為等腰直角三角形,從而得到的最大面積.【詳解】解:連接OA、OB,如圖1,,,為等邊三角形,,,,要使的最大面積,則點C到AB的距離最大,作的外接圓D,如圖2,連接CD,,點C在上,AB是的直徑,當點C半圓的中點時,點C到AB的距離最大,此時等腰直角三角形,,,ABCD,的最大面積為1.故選B.【點睛】本題考查了圓的綜合題:熟練掌握圓周角定理和等腰直角三角形的判斷與性質(zhì);記住等腰直角三角形的面積公式.8、B【解析】根據(jù)旋轉的定義即可得出答案.【詳解】解:A.旋轉90°后能與自身重合,不合題意;B.旋轉72°后能與自身重合,符合題意;C.旋轉60°后能與自身重合,不合題意;D.旋轉45°后能與自身重合,不合題意;故選B.【點睛】本題考查的是旋轉:如果某一個圖形圍繞某一點旋轉一定的角度(小于360°)后能與原圖形重合,那么這個圖形就叫做旋轉對稱圖形.9、D【分析】設箱中卡的總張數(shù)可能是x張,則綠卡有(x-3)張,根據(jù)抽到綠卡的概率穩(wěn)定在75%附近,利用概率公式列方程求出x的值即可得答案.【詳解】設箱中卡的總張數(shù)可能是x張,∵箱子中有3張紅卡和若干張綠卡,∴綠卡有(x-3)張,∵抽到綠卡的概率穩(wěn)定在75%附近,∴,解得:x=12,∴箱中卡的總張數(shù)可能是12張,故選:D.【點睛】本題考查等可能情形下概率的計算,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關鍵.10、B【分析】由拋物線的對稱軸是,可知系數(shù)之間的關系,由題意,與軸的一個交點坐標為,根據(jù)拋物線的對稱性,求得拋物線與軸的一個交點坐標為,從而可判斷拋物線與軸有兩個不同的交點,進而可轉化求一元二次方程根的判別式,當時,代入解析式,可求得函數(shù)值,即可判斷其的值是正數(shù)或負數(shù).【詳解】拋物線的對稱軸是;③正確,與軸的一個交點坐標為拋物線與與軸的另一個交點坐標為關于的方程的兩個根是;②正確,當x=1時,y=;④正確拋物線與軸有兩個不同的交點,則①錯誤;當時,隨增大而減小當時,隨增大而增大,⑤錯誤;②③④正確,①⑤錯誤故選:B.【點睛】本題考查二次函數(shù)圖象的基本性質(zhì):對稱性、增減性、函數(shù)值的特殊性、二次函數(shù)與一元二次方程的綜合運用,是常見考點,難度適中,熟練掌握二次函數(shù)圖象基本性質(zhì)是解題關鍵.11、A【解析】∵線段CD是由線段AB平移得到的,而點A(?1,4)的對應點為C(4,7),∴由A平移到C點的橫坐標增加5,縱坐標增加3,則點B(?4,?1)的對應點D的坐標為(1,2).故選A12、B【分析】把點代入,解得的值,得出函數(shù)解析式,再把=3即可得到的值.【詳解】把代入,得,解得=把=3,代入==-4故選B.【點睛】本題考查了二次函數(shù)的解析式,直接將坐標代入法是解題的關鍵.二、填空題(每題4分,共24分)13、(0,0)【解析】令x=0求出y的值,然后寫出即可.【詳解】令x=0,則y=0,所以,拋物線與y軸的交點坐標為(0,0).故答案為(0,0).【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,熟練掌握拋物線與坐標軸的交點的求解方法是解題的關鍵.14、x=﹣1【分析】直接利用二次函數(shù)對稱軸公式求出答案.【詳解】拋物線y=x2+2x﹣3的對稱軸是:直線x=﹣=﹣=﹣1.故答案為:直線x=﹣1.【點睛】此題主要考查了二次函數(shù)的性質(zhì),正確記憶二次函數(shù)對稱軸公式是解題關鍵.15、1或﹣2【分析】分兩種情況討論:①當m≠n時,根據(jù)根與系數(shù)的關系即可求出答案;②當m=n時,直接得出答案.【詳解】由題意可知:m、n是方程x1+1x﹣1=0的兩根,分兩種情況討論:①當m≠n時,由根與系數(shù)的關系得:m+n=﹣1,mn=﹣1,∴原式2,②當m=n時,原式=1+1=1.綜上所述:的值是1或﹣2.故答案為:1或﹣2.【點睛】本題考查了構造一元二次方程求代數(shù)式的值,解答本題的關鍵是熟練運用根與系數(shù)的關系,本題屬于中等題型.16、.【分析】根據(jù)平行四邊形的性質(zhì)和角平分線的性質(zhì),得出邊的關系,進而利用相似三角形的性質(zhì)求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分線,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案為:.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關鍵是熟知平行四邊形的性質(zhì)、角平分線的性質(zhì)及相似三角形的判定定理.17、.【解析】試題分析:根據(jù)作圖可以證明△AOB是等邊三角形,則∠AOB=60°,據(jù)此即可求解.試題解析:連接AB,由畫圖可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB為等邊三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.考點:1.特殊角的三角函數(shù)值;2.等邊三角形的判定與性質(zhì).18、1【分析】證明△ADE∽△ACB,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.【詳解】解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴,即,解得,AE=1,故答案為:1.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關鍵.三、解答題(共78分)19、(1)每件玩具的售價為80元;(2)每件玩具的售價為85元時,每天盈利最多,最多盈利1250元.【分析】(1)根據(jù)題意,可以得到關于x的一元二次方程,從而可以解答本題;(2)根據(jù)題意可以得到利潤與售價的函數(shù)關系式,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.【詳解】解:(1)設每件玩具的售價為元,,解得:,,∵擴大銷售,增加盈利,盡快減少庫存,∴,答:每件玩具的售價為80元;(2)設每件玩具的售價為元時,利潤為元,,即當時,有最大值為1250元,答:當每件玩具的售價為85元時,商店每天盈利最多,最多盈利1250元.【點睛】本題考查二次函數(shù)的應用、一元二次方程的應用,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.20、=-4,=1.【分析】首先根據(jù)十字相乘法將原方程轉化成兩個多項式的積,然后進行解方程.【詳解】解:+3x-4=0(x+4)(x-1)=0解得:=-4,=1.【點睛】本題考查解一元二次方程21、(1);(2)①點的坐標為,;②,是定值.【分析】(1)設函數(shù)為,把代入即可求解;(2)①先求出直線AB解析式,求出C’點,得到,再求出,設點,過作軸的平行線交于點,得到,根據(jù)三角形面積公式得,解出x即可求解;②過作軸的垂線,垂足為點,設,表示出,故,根據(jù),得,故,即,得到.再過作的垂線,垂足為點,根據(jù)相似三角形的性質(zhì)得到,可得的值即為定值.【詳解】(1)解:設,把點代入,得,解得,∴該拋物線對應的函數(shù)表達式為.(2)①設直線的函數(shù)表達式為,把,代入,得,解得.∴直線的函數(shù)表達式為.設直線與軸交于點,則點,∴.,.設點,過作軸的平行線交于點,則,∴,,,所以點的坐標為,.②過作軸的垂線,垂足為點,設,則,,由,得,,即,故.過作的垂線,垂足為點,由,得,,即,故.所以,是定值.【點睛】此題主要考查二次函數(shù)綜合,解題的關鍵是熟知二次函數(shù)的圖像與性質(zhì),相似三角形的判定與性質(zhì).22、(1)相切,理由見解析;(2)DE=.【分析】(1)連接AD,OD,根據(jù)已知條件證得OD⊥DE即可;(2)根據(jù)勾股定理計算即可.【詳解】解:(1)相切,理由如下:連接AD,OD,∵AB為⊙O的直徑,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE與⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,AD==1.∵SACD=AD?CD=AC?DE,∴×1×3=×5DE.∴DE=.【點睛】本題主要考查直線與圓的位置關系,等腰三角形的性質(zhì)、勾股定理等知識.正確大氣層造輔助線是解題的關鍵.23、(1)y=﹣x2+2x,頂點A的坐標是(1,1);(2)CD長為定值.【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)配方法,可得頂點坐標;(2)根據(jù)平移規(guī)律,可設出新拋物線解析式,聯(lián)立拋物線與直線OA,可得C、D點的橫坐標,根據(jù)勾股定理,可得答案.【詳解】解:(1)把(3,﹣3)代入y=﹣x2+mx+m-2得:﹣3=﹣32+3m+m-2,解得m=2,∴y=﹣x2+2x,∴y=﹣x2+2x=﹣(x-1)2+1,∴頂點A的坐標是(1,1);(2)易得直線OA的解析式為y=x,平移后拋物線頂點在直線OA上,設平移后頂點為(a,a),∴可設新的拋物線解析式為y=﹣(x﹣a)2+a,聯(lián)立解得:x1=a,x2=a﹣1,∴C(a-1,a-1),D(a,a),即C、D兩點間的橫坐標的差為1,縱坐標的差也為1,∴CD=∴CD長為定值.【點睛】本題考查了二次函數(shù)綜合題,利用待定系數(shù)法求函數(shù)解析式,再利用解析式確定頂點坐標;根據(jù)平移規(guī)律確定拋物線解析式,通過聯(lián)立解析式確定交點坐標,利用勾股定理求解.24、(1);(1).【分析】(1)先把D點坐標代入y=﹣x+b中求得b,則一次函數(shù)解析式為y=﹣x﹣3,于是可確定A(﹣6,0),作EF⊥x軸于F,如圖,利用平行線分線段成比例求出OF=4,接著利用一次函數(shù)解析式確定E點坐標為(4,﹣5),然后利用待定系數(shù)法求拋物線解析式;(1)作MH⊥AD于H,作D點關于x軸的對稱點D′,如圖,則D′(0,3),利用勾股定理得到AD=3,再證明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用兩點之間線段最短得到當點M、H、D′共線時,MD+MA的值最小,然后證明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【詳解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函數(shù)解析式為y=﹣x﹣3,當y=0時,﹣x﹣3=0,解得x=﹣6,則A(﹣6,0),作EF⊥x軸于F,如圖,∵OD∥EF,∴==,∴OF=OA=4,∴E點的橫坐標為4,當x=4時,y=﹣x﹣3=﹣5,∴E點坐標為(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax1+4ax+c得,解得,∴拋物線解析式為;(1)作MH⊥AD于H,作D點關于x軸的對稱點D′,如圖,則D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,當點M、H、D′共線時,MD+MA=MD′+MH=D′H,此時MD+MA的值最小,∵∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論