2023屆廣西河池市、柳州市數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆廣西河池市、柳州市數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆廣西河池市、柳州市數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆廣西河池市、柳州市數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆廣西河池市、柳州市數(shù)學(xué)九年級第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,∠A=75°,AB=6,AC=8,將△ABC沿圖中的虛線剪開,剪下的陰影三角形與原三角形不相似的是()A. B. C. D.2.如圖,中,內(nèi)切圓和邊、、分別相切于點(diǎn)、、,若,,則的度數(shù)是()A. B. C. D.3.平面直角坐標(biāo)系內(nèi),已知線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(2,2)、B(3,1),以原點(diǎn)O為位似中心,將線段AB擴(kuò)大為原來的2倍后得到對應(yīng)線段,則端點(diǎn)的坐標(biāo)為()A.(4,4) B.(4,4)或(-4,-4) C.(6,2) D.(6,2)或(-6,-2)4.?dāng)z影興趣小組的學(xué)生,將自己拍攝的照片向本組其他成員各贈(zèng)送一張,全組共互贈(zèng)了182張,若全組有x名學(xué)生,則根據(jù)題意列出的方程是()A.x(x+1)=182 B.0.5x(x+1)=182C.0.5x(x-1)=182D.x(x-1)=1825.下圖中,最能清楚地顯示每組數(shù)據(jù)在總數(shù)中所占百分比的統(tǒng)計(jì)圖是()A. B.C. D.6.如圖,在平面直角坐標(biāo)系中,點(diǎn)在拋物線上運(yùn)動(dòng),過點(diǎn)作軸于點(diǎn),以為對角線作矩形,連結(jié),則對角線的最小值為()A. B. C. D.7.一元二次方程配方為()A. B. C. D.8.如圖,正方形ABCD中,AD=6,E為AB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長EF交BC于G,F(xiàn)H⊥BC,垂足為H,延長DF交BC與點(diǎn)M,連接BF、DG.以下結(jié)論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正確的個(gè)數(shù)是()A.3 B.4 C.5 D.69.若α為銳角,且,則α等于()A. B. C. D.10.同學(xué)們參加綜合實(shí)踐活動(dòng)時(shí),看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點(diǎn)A,B為圓心,AB長為半徑作弧,兩弧交于點(diǎn)C;(2)以點(diǎn)C為圓心,仍以AB長為半徑作弧交AC的延長線于點(diǎn)D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=二、填空題(每小題3分,共24分)11.如圖,在△ABC中,∠A=90°,AB=AC=2,以AB為直徑的圓交BC于點(diǎn)D,求圖中陰影部分的面積為_____.12.如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點(diǎn)B,OC交AB于點(diǎn)D,若CD=OD,則△AOD與△BCD的面積比為__.13.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長為_____.14.如圖,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,則CF=______.15.如圖,矩形ABCD中,AB=1,AD=.以A為圓心,AD的長為半徑做弧交BC邊于點(diǎn)E,則圖中的弧長是_______.16.在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn?nCn+1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)B?的坐標(biāo)是_____,點(diǎn)Bn的坐標(biāo)是_____.17.分母有理化:=_____.18.如果,那么的值為______.三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=﹣x+5的圖象與坐標(biāo)軸交于A,B兩點(diǎn),與反比例函數(shù)y=的圖象交于M,N兩點(diǎn),過點(diǎn)M作MC⊥y軸于點(diǎn)C,且CM=1,過點(diǎn)N作ND⊥x軸于點(diǎn)D,且DN=1.已知點(diǎn)P是x軸(除原點(diǎn)O外)上一點(diǎn).(1)直接寫出M、N的坐標(biāo)及k的值;(2)將線段CP繞點(diǎn)P按順時(shí)針或逆時(shí)針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點(diǎn)Q的坐標(biāo);如果不能,請說明理由;(3)當(dāng)點(diǎn)P滑動(dòng)時(shí),是否存在反比例函數(shù)圖象(第一象限的一支)上的點(diǎn)S,使得以P、S、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出符合題意的點(diǎn)S的坐標(biāo);若不存在,請說明理由.20.(6分)將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖1擺放,點(diǎn)D為AB邊的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過點(diǎn)C,且BC=2.(1)求證:△ADC∽△APD;(2)求△APD的面積;(3)如圖2,將△DEF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)角α(0°<α<60°),此時(shí)的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷PMCN的值是否隨著α的變化而變化?如果不變,請求出PM21.(6分)在⊙O中,AB為直徑,C為⊙O上一點(diǎn).(1)如圖1,過點(diǎn)C作⊙O的切線,與AB延長線相交于點(diǎn)P,若∠CAB=27°,求∠P的度數(shù);(2)如圖2,D為弧AB上一點(diǎn),OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點(diǎn)P,若∠CAB=10°,求∠P的大?。?2.(8分)在一個(gè)不透明的袋子中裝有3個(gè)乒乓球,分別標(biāo)有數(shù)字1,2,3,這些乒乓球除所標(biāo)數(shù)字不同外其余均相同.先從袋子中隨機(jī)摸出1個(gè)乒乓球,記下標(biāo)號后放回,再從袋子中隨機(jī)摸出1個(gè)乒乓球記下標(biāo)號,用畫樹狀圖(或列表)的方法,求兩次摸出的乒乓球標(biāo)號之和是偶數(shù)的概率.23.(8分)如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E,連接AC、OC、BC(1)求證:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)24.(8分)如圖,在8×8的正方形網(wǎng)格中,△AOB的頂點(diǎn)都在格點(diǎn)上.請?jiān)诰W(wǎng)格中畫出△OAB的一個(gè)位似圖形,使兩個(gè)圖形以點(diǎn)O為位似中心,且所畫圖形與△OAB的位似為2:1.25.(10分)已知拋物線的頂點(diǎn)坐標(biāo)為(1,2),且經(jīng)過點(diǎn)(3,10)求這條拋物線的解析式.26.(10分)如圖,AB是⊙O的直徑,AC⊥AB,BC交⊙O于點(diǎn)D,點(diǎn)E在劣弧BD上,DE的延長線交AB的延長線于點(diǎn)F,連接AE交BD于點(diǎn)G.(1)求證:∠AED=∠CAD;(2)若點(diǎn)E是劣弧BD的中點(diǎn),求證:ED2=EG?EA;(3)在(2)的條件下,若BO=BF,DE=2,求EF的長.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)相似三角形的判定定理對各選項(xiàng)進(jìn)行逐一判定即可.【詳解】A、根據(jù)平行線截得的三角形與原三角形有兩個(gè)角相等,故兩三角形相似,故本選項(xiàng)錯(cuò)誤;B、陰影部分的三角形與原三角形有兩個(gè)角相等,故兩三角形相似,故本選項(xiàng)錯(cuò)誤;C、兩三角形對應(yīng)邊成比例且夾角相等,故兩三角形相似,故本選項(xiàng)錯(cuò)誤.D、兩三角形的對應(yīng)邊不成比例,故兩三角形不相似,故本選項(xiàng)正確;故選:D.【點(diǎn)睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定定理是解題的關(guān)鍵.2、D【分析】連接IE,IF,先利用三角形內(nèi)角和定理求出的度數(shù),然后根據(jù)四邊形內(nèi)角和求出的度數(shù),最后利用圓周角定理即可得出答案.【詳解】連接IE,IF∵,∵I是內(nèi)切圓圓心∴故選:D.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理,四邊形內(nèi)角和,圓周角定理,掌握三角形內(nèi)角和定理,四邊形內(nèi)角和,圓周角定理是解題的關(guān)鍵.3、B【分析】根據(jù)位似圖形的性質(zhì)只要點(diǎn)的橫、縱坐標(biāo)分別乘以2或﹣2即得答案.【詳解】解:∵原點(diǎn)O為位似中心,將線段AB擴(kuò)大為原來的2倍后得到對應(yīng)線段,且A(2,2)、B(3,1),∴點(diǎn)的坐標(biāo)為(4,4)或(﹣4,﹣4).故選:B.【點(diǎn)睛】本題考查了位似圖形的性質(zhì),屬于基礎(chǔ)題型,正確分類、掌握求解的方法是解題關(guān)鍵.4、D【解析】共送出照片數(shù)=共有人數(shù)×每人需送出的照片數(shù).根據(jù)題意列出的方程是x(x-1)=1.故選D.5、A【分析】根據(jù)統(tǒng)計(jì)圖的特點(diǎn)進(jìn)行分析可得:扇形統(tǒng)計(jì)圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計(jì)圖表示的是事物的變化情況;條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目.【詳解】解:在進(jìn)行數(shù)據(jù)描述時(shí),要顯示部分在總體中所占的百分比,應(yīng)采用扇形統(tǒng)計(jì)圖.

故選:A.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖的選擇,解決本題的關(guān)鍵是明確:扇形統(tǒng)計(jì)圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計(jì)圖表示的是事物的變化情況;條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目;頻率分布直方圖,清楚顯示在各個(gè)不同區(qū)間內(nèi)取值,各組頻率分布情況,易于顯示各組之間頻率的差別.6、B【分析】根據(jù)矩形的性質(zhì)可知,要求BD的最小值就是求AC的最小值,而AC的長度對應(yīng)的是A點(diǎn)的縱坐標(biāo),然后利用二次函數(shù)的性質(zhì)找到A點(diǎn)縱坐標(biāo)的最小值即可.【詳解】∵四邊形ABCD是矩形∴∴頂點(diǎn)坐標(biāo)為∵點(diǎn)在拋物線上運(yùn)動(dòng)∴點(diǎn)A縱坐標(biāo)的最小值為2∴AC的最小值是2∴BD的最小值也是2故選:B.【點(diǎn)睛】本題主要考查矩形的性質(zhì)及二次函數(shù)的最值,掌握矩形的性質(zhì)和二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.7、A【分析】方程移項(xiàng)變形后,利用完全平方公式化簡得到結(jié)果,即可做出判斷.【詳解】解:x2-6x-4=0,

x2-6x=4,

x2-6x+32=4+32,

(x-3)2=13,

故選:A.【點(diǎn)睛】此題考查了解一元二次方程-配方法.配方法的一般步驟:(1)把常數(shù)項(xiàng)移到等號的右邊;

(2)把二次項(xiàng)的系數(shù)化為1;(3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).8、C【分析】根據(jù)正方形的性質(zhì)、折疊的性質(zhì)、三角形外角的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理對各個(gè)選項(xiàng)依次進(jìn)行判斷、計(jì)算,即可得出答案.【詳解】解:正方形ABCD中,,E為AB的中點(diǎn),,,,

沿DE翻折得到,

,,,,

,,

,

又,

,

,∴,又∵,,∴∠BFD+∠ADE=180°,故①正確;∵,,∴又∵,,∴,∴MB=MF,∴△BFM為等腰三角形;故②正確;,,

∴,∴,又∵,∴,∵,,∴,

∽,故正確;

,,,

∵在和中,,

≌,,

設(shè),則,,

在中,由勾股定理得:,

解得:,∴EG=5,,,∴sin∠EGB=,故⑥正確;

∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正確;∽,且,設(shè),則,

在中,由勾股定理得:,

解得:舍去或,

,故錯(cuò)誤;故正確的個(gè)數(shù)有5個(gè),故選:C.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、折疊的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、平行線的判定、勾股定理、三角函數(shù)等知識(shí),本題綜合性較強(qiáng),證明三角形全等和三角形相似是解題的關(guān)鍵.9、B【解析】根據(jù)得出α的值.【詳解】解:∵∴α-10°=60°,

即α=70°.

故選:B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值,特殊角的三角函數(shù)值的計(jì)算在中考中經(jīng)常出現(xiàn),題型以選擇題、填空題為主.10、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點(diǎn)C是△ABD的外心,根據(jù)三角函數(shù)的定義計(jì)算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結(jié)論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點(diǎn)B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點(diǎn)C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯(cuò)誤,故選:D.【點(diǎn)睛】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理和解直角三角形.二、填空題(每小題3分,共24分)11、1【分析】連接AD,由圖中的圖形關(guān)系看出陰影部分的面積可以簡化成一個(gè)三角形的面積,然后通過已知條件求出面積.【詳解】解:連接AD,

∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD組成的兩個(gè)弓形面積相等,∴陰影部分的面積就等于△ABD的面積,∴S△ABD=AD?BD=××=1.故答案為:1.【點(diǎn)睛】本題考查的是扇形面積的計(jì)算,根據(jù)題意作出輔助線,構(gòu)造出等腰直角三角形是解答此題的關(guān)鍵.12、1.【分析】作CE⊥x軸于E,如圖,利用平行線分線段成比例得到===,設(shè)D(m,n),則C(2m,2n),再根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=4mn,則A(m,4n),然后根據(jù)三角形面積公式用m、n表示S△AOD和S△BCD,從而得到它們的比.【詳解】作CE⊥x軸于E,如圖,∵DB∥CE,∴===,設(shè)D(m,n),則C(2m,2n),∵C(2m,2n)在反比例函數(shù)圖象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD=×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD與△BCD的面積比=mn:mn=1.故答案為1.【點(diǎn)睛】考核知識(shí)點(diǎn):平行線分線段成比例,反比例函數(shù);數(shù)形結(jié)合,利用平行線分線段成比例,反比例函數(shù)定義求出點(diǎn)的坐標(biāo)關(guān)系是關(guān)鍵.13、1+【分析】利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B、D的坐標(biāo),進(jìn)而可得出OD、OA、OB,根據(jù)圓的性質(zhì)可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據(jù)CD=CO+OD即可求出結(jié)論.【詳解】當(dāng)x=0時(shí),y=(x﹣1)2﹣4=﹣1,∴點(diǎn)D的坐標(biāo)為(0,﹣1),∴OD=1;當(dāng)y=0時(shí),有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.【點(diǎn)睛】先根據(jù)二次函數(shù)與一元二次方程的關(guān)系,勾股定理,熟練掌握二次函數(shù)與一元二次方程的關(guān)系是解答本題的關(guān)鍵.14、【解析】試題分析:證△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,設(shè)CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.試題解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四邊形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,設(shè)CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4-x)2=x2+22,x=,CF=.考點(diǎn):矩形的性質(zhì).15、π【分析】根據(jù)題意可得AD=AE=,則可以求出sin∠AEB,可以判斷出可判斷出∠AEB=45°,進(jìn)一步求解∠DAE=∠AEB=45°,代入弧長得到計(jì)算公式可得出弧DE的長度.【詳解】解:∵AD半徑畫弧交BC邊于點(diǎn)E,AD=

∴AD=AE=,

又∵AB=1,

∴∴∠AEB=45°,∵四邊形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,

故可得弧DC的長度為==π,

故答案為:π.【點(diǎn)睛】此題考查了弧長的計(jì)算公式,解答本題的關(guān)鍵是求出∠DAE的度數(shù),要求我們熟練掌握弧長的計(jì)算公式及解直角三角形的知識(shí).16、(4,7)(2n﹣1,2n﹣1)【分析】根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出A1、A2、A3、A4的坐標(biāo),結(jié)合圖形即可得知點(diǎn)Bn是線段CnAn+1的中點(diǎn),由此即可得出點(diǎn)Bn的坐標(biāo).【詳解】解:∵直線l:y=x﹣1與x軸交于點(diǎn)A,∴A1(1,0),觀察,發(fā)現(xiàn):A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴An(2n﹣1,2n﹣1﹣1)(n為正整數(shù)).觀察圖形可知:B1(1,1),B2(2,3),B3(4,7),點(diǎn)Bn是線段CnAn+1的中點(diǎn),∴點(diǎn)Bn的坐標(biāo)是(2n﹣1,2n﹣1).故答案為:(4,7),(2n﹣1,2n﹣1)(n為正整數(shù)).【點(diǎn)睛】此題主要考查一次函數(shù)與幾何,解題的關(guān)鍵是發(fā)現(xiàn)坐標(biāo)的變化規(guī)律.17、+.【解析】一般二次根式的有理化因式是符合平方差公式的特點(diǎn)的式子.據(jù)此作答.【詳解】解:==+.故答案為+.【點(diǎn)睛】本題考查二次根式的有理化.根據(jù)二次根式的乘除法法則進(jìn)行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特點(diǎn)的式子.18、【分析】利用因式分解法求出的值,再根據(jù)可得最終結(jié)果.【詳解】解:原方程可化為:,解得:或,∵,∴.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是解一元二次方程以及銳角三角函數(shù)的定義,熟記正弦的取值范圍是解此題的關(guān)鍵.三、解答題(共66分)19、(1)M(1,4),N(4,1),k=4;(2)(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2);(3)(,5)或(,3).【分析】(1)利用待定系數(shù)法即可解決問題;(2)分三種情形求解:①如圖2,點(diǎn)P在x軸的正半軸上時(shí),繞P順時(shí)針旋轉(zhuǎn)到點(diǎn)Q,根據(jù)△COP≌△PHQ,得CO=PH,OP=QH,設(shè)P(x,0),表示Q(x+4,x),代入反比例函數(shù)的關(guān)系式中可得Q的兩個(gè)坐標(biāo);②如圖3,點(diǎn)P在x軸的負(fù)半軸上時(shí);③如圖4,點(diǎn)P在x軸的正半軸上時(shí),繞P逆時(shí)針旋轉(zhuǎn)到點(diǎn)Q,同理可得結(jié)論.(3)分兩種情形分別求解即可;【詳解】解:(1)由題意M(1,4),n(4,1),∵點(diǎn)M在y=上,∴k=4;(2)當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能在反比例函數(shù)的圖象上;如圖1,CP=PQ,∠CPQ=90°,過Q作QH⊥x軸于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函數(shù)的解析式:y=;當(dāng)x=1時(shí),y=4,∴M(1,4),∴OC=PH=4設(shè)P(x,0),∴Q(x+4,x),當(dāng)點(diǎn)Q落在反比例函數(shù)的圖象上時(shí),x(x+4)=4,x2+4x+4=8,x=﹣2±,當(dāng)x=﹣2±時(shí),x+4=2+,如圖1,Q(2+2,2+2);當(dāng)x=﹣2﹣2時(shí),x+4=2﹣2,如圖2,Q(2﹣2,2﹣2);如圖3,CP=PQ,∠CPQ=90°,設(shè)P(x,0)過P作GH∥y軸,過C作CG⊥GH,過Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),綜上所述,點(diǎn)Q的坐標(biāo)為(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)當(dāng)MN為平行四邊形的對角線時(shí),根據(jù)MN的中點(diǎn)的縱坐標(biāo)為,可得點(diǎn)S的縱坐標(biāo)為5,即S(,5);當(dāng)MN為平行四邊形的邊時(shí),易知點(diǎn)S的縱坐標(biāo)為3,即S(,3);綜上所述,滿足條件的點(diǎn)S的坐標(biāo)為(,5)或(,3).【點(diǎn)睛】本題是一道關(guān)于一次函數(shù)和反比例函數(shù)相結(jié)合的綜合題目,題目中涉及到了旋轉(zhuǎn)及動(dòng)點(diǎn)問題,主要是通過作輔助線利用三角形全等來解決,充分考查了學(xué)生綜合分析問題的能力.20、(1)見解析;(2)33;(3)不會(huì)隨著α【解析】(1)先判斷出△BCD是等邊三角形,進(jìn)而求出∠ADP=∠ACD,即可得出結(jié)論;

(2)求出PH,最后用三角形的面積公式即可得出結(jié)論;

(3)只要證明△DPM和△DCN相似,再根據(jù)相似三角形對應(yīng)邊成比例即可證明.【詳解】(1)證明:∵△ABC是直角三角形,點(diǎn)D是AB的中點(diǎn),∴AD=BD=CD,∵在△BCD中,BC=BD且∠B=60°,∴△BCD是等邊三角形,∴∠BCD=∠BDC=60°,∴∠ACD=90°-∠BCD=30°,∠ADE=180°-∠BDC-∠EDF=30°,在△ADC與△APD中,∠A=∠A,∠ACD=∠ADP,∴△ADC∽△APD.(2)由(1)已得△BCD是等邊三角形,∴BD=BC=AD=2,過點(diǎn)P作PH⊥AD于點(diǎn)H,∵∠ADP=30°=90°-∠B=∠A,∴AH=DH=1,tanA=PHAH∴PH=33∴△APD的面積=12AD·PH=(3)PMCN的值不會(huì)隨著α的變化而變化∵∠MPD=∠A+∠ADE=30°+30°=60°,∴∠MPD=∠BCD=60°,在△MPD與△NCD中,∠MPD=∠NCD=60°,∠PDM=∠CDN=α,∴△MPD∽△NCD,∴PMCN由(1)知AD=CD,∴PMCN由(2)可知PD=2AH,∴PD=23∴PMCN∴PMCN的值不會(huì)隨著α的變化而變化【點(diǎn)睛】屬于相似三角形的綜合題,考查相似三角形的判定與性質(zhì),銳角三角函數(shù),三角形的面積等,綜合性比較強(qiáng),對學(xué)生綜合能力要求較高.21、(1)∠P=36°;(2)∠P=30°.【分析】(1)連接OC,首先根據(jù)切線的性質(zhì)得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答案;(2)根據(jù)E為AC的中點(diǎn)得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD=12∠AOD=40°【詳解】解:(1)如圖,連接OC,∵⊙O與PC相切于點(diǎn)C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(2)∵E為AC的中點(diǎn),∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=12∠AOD=40°∵∠ACD是△ACP的一個(gè)外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.【點(diǎn)睛】本題考查切線的性質(zhì).22、圖形見解析,概率為【分析】根據(jù)題意列出樹形圖,再利用概率公式計(jì)算即可.【詳解】根據(jù)題意,列表如下:共有9種結(jié)果,并且它們出現(xiàn)的可能性相等,符合題意的結(jié)果有5種,.【點(diǎn)睛】本題考查概率的計(jì)算,關(guān)鍵在于熟悉樹形圖和概率公式.23、(1)見解析;(2)169π(cm2).【分析】(1)根據(jù)垂徑定理,即可得=,根據(jù)同弧所對的圓周角相等,證出∠BAC=∠BCD,再根據(jù)等邊對等角,即可得到∠BAC=∠ACO,從而證出∠ACO=∠BCD;(2)根據(jù)垂徑定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論