版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀
1數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀——對(duì)數(shù)學(xué)和數(shù)學(xué)教學(xué)本質(zhì)問題的回答數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件2數(shù)學(xué)觀——人們對(duì)數(shù)學(xué)的性質(zhì)、任務(wù)、來源、以及數(shù)學(xué)與人類社會(huì)各個(gè)領(lǐng)域的知識(shí)之間的關(guān)系的認(rèn)識(shí)。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件3數(shù)學(xué)是科學(xué)的女王數(shù)學(xué)是一種別具匠心的藝術(shù)數(shù)學(xué)是符號(hào)加邏輯數(shù)學(xué)是人類的思考中最高的成就數(shù)學(xué)是研究抽象結(jié)構(gòu)的理論數(shù)學(xué)是上帝描述自然的符號(hào)數(shù)支配著宇宙數(shù)學(xué)是一種會(huì)不斷進(jìn)化的文化數(shù)學(xué)是一切知識(shí)中的最高形式數(shù)學(xué)是人類智慧皇冠上最燦爛的明珠數(shù)學(xué)是知識(shí)的工具,亦是其它知識(shí)工具的泉源。所有研究順序和度量的科學(xué)均和數(shù)學(xué)有關(guān)數(shù)學(xué)是一種理性的精神,使人類的思維得以運(yùn)用到最完善的程度給我空間、時(shí)間、及對(duì)數(shù),我可以創(chuàng)造一個(gè)宇宙自然界的書是用數(shù)學(xué)的語言寫成的數(shù)學(xué)是各式各樣的證明技巧第一是數(shù)學(xué),第二是數(shù)學(xué),第三是數(shù)學(xué)……什么是數(shù)學(xué)數(shù)學(xué)是科學(xué)的女王什么是數(shù)學(xué)4數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué)。數(shù)學(xué)與人類發(fā)展和社會(huì)進(jìn)步息息相關(guān),隨著現(xiàn)代信息技術(shù)的飛速發(fā)展,數(shù)學(xué)更加廣泛應(yīng)用于社會(huì)生產(chǎn)和日常生活的各個(gè)方面。數(shù)學(xué)作為對(duì)客觀現(xiàn)象抽象概括而逐漸形成的科學(xué)語言與工具,不僅是自然科學(xué)和技術(shù)科學(xué)的基礎(chǔ),而且在人文科學(xué)與社會(huì)科學(xué)中發(fā)揮著越來越大的作用。特別是20世紀(jì)中葉以來,數(shù)學(xué)與計(jì)算機(jī)技術(shù)的結(jié)合在許多方面直接為社會(huì)創(chuàng)造價(jià)值,推動(dòng)著社會(huì)生產(chǎn)力的發(fā)展。。(全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(修改稿),2011年)什么是數(shù)學(xué)數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué)。數(shù)學(xué)與人類發(fā)展和社會(huì)進(jìn)步5什么是數(shù)學(xué)不同歷史時(shí)期有很不相同、很不一致的觀點(diǎn)古代中國:數(shù)學(xué)是術(shù),是用來解決生產(chǎn)與生活問題的計(jì)算方法。古希臘:數(shù)學(xué)是理念,是關(guān)于世界本質(zhì)的學(xué)問,數(shù)學(xué)對(duì)象是一種不依賴于人類思維的客觀存在,但可以通過親身體驗(yàn),借助實(shí)驗(yàn)、觀察和抽象獲得有關(guān)的知識(shí)。代表人物:畢達(dá)哥拉斯、柏拉圖,強(qiáng)調(diào)數(shù)量關(guān)系是現(xiàn)實(shí)的本質(zhì),自然界是按數(shù)學(xué)方式設(shè)計(jì)的,并且這個(gè)設(shè)計(jì)是和諧優(yōu)美的內(nèi)部真理。(張維忠.論數(shù)學(xué)觀的演變.大自然探索,1998,1.)什么是數(shù)學(xué)不同歷史時(shí)期有很不相同、很不一致的觀點(diǎn)(張維忠.論6什么是數(shù)學(xué)畢達(dá)哥拉斯學(xué)派神秘主義數(shù)學(xué)觀
畢達(dá)哥拉斯(Pythagoras,572BC—497BC)古希臘數(shù)學(xué)家、哲學(xué)家。無論是解說外在物質(zhì)世界,還是描寫內(nèi)在精神世界,都不能沒有數(shù)學(xué)!最早悟出萬事萬物背后都有數(shù)的法則在起作用的,是生活在2500年前的畢達(dá)哥拉斯。
畢達(dá)哥拉斯學(xué)派:亦稱“南意大利學(xué)派”,是一個(gè)集政治、學(xué)術(shù)、宗教三位于一體的組織。古希臘哲學(xué)家畢達(dá)哥拉斯所創(chuàng)立。產(chǎn)生于公元前6世紀(jì)末,公元前5世紀(jì)被迫解散,其成員大多是數(shù)學(xué)家、天文學(xué)家、音樂家。它是西方美學(xué)史上最早探討美的本質(zhì)的學(xué)派。
數(shù)是宇宙萬物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,萬物按照一定的數(shù)量比例而構(gòu)成和諧的秩序什么是數(shù)學(xué)畢達(dá)哥拉斯學(xué)派神秘主義數(shù)學(xué)觀7“萬物皆數(shù)”:“1”是數(shù)的第一原則,萬物之母,也是智慧;“2”是對(duì)立和否定的原則,是意見;“3”是萬物的形體和形式;“4”是正義,是宇宙創(chuàng)造者的象征;“5”是奇數(shù)和偶數(shù),雄性與雌性和結(jié)合,也是婚姻;“6”是神的生命,是靈魂;“7”是機(jī)會(huì);“8”是和諧,也是愛情和友誼;“9”是理性和強(qiáng)大;“10”包容了一切數(shù)目,是完滿和美好。
“美是和諧”:數(shù)是音樂和諧的基礎(chǔ)。他們發(fā)現(xiàn),音樂的和諧是由高低長(zhǎng)短輕重不同的音調(diào)按照一定的數(shù)量上的比例組成,當(dāng)一根琴弦被縮短到原來長(zhǎng)度的一半時(shí),撥動(dòng)琴弦,音調(diào)將提高8度;比率為3∶2和4∶3時(shí),相對(duì)應(yīng)的是高5度和高4度的和聲。和聲就是由這樣一些不同的部分組成的整體。他們認(rèn)為,正是由于各種事物的數(shù)值比確定了它們分別是什么,并顯示出彼此之間的關(guān)系。
“萬物皆數(shù)”:“1”是數(shù)的第一原則,萬物之母,也是智慧;“28柏拉圖主義柏拉圖(Plato,Πλ?των,約前427年-前347年),古希臘偉大的哲學(xué)家,也是全部西方哲學(xué)乃至整個(gè)西方文化最偉大的哲學(xué)家和思想家之一,他和老師蘇格拉底,學(xué)生亞里士多德并稱為古希臘三大哲學(xué)家。柏拉圖還是西方教育史上第一個(gè)提出完整的學(xué)前教育思想并建立了完整的教育體系的人。柏拉圖指出了每門學(xué)科對(duì)于發(fā)展抽象思維的意義。從20~30歲,那些對(duì)抽象思維表現(xiàn)特殊興趣的學(xué)生就要繼續(xù)深造,學(xué)習(xí)算術(shù)、幾何、天文學(xué)與和聲學(xué)等學(xué)科,以鍛煉他的思考能力,使他開始探索宇宙的奧妙。主張未來的統(tǒng)治者在30歲以后,要進(jìn)一步學(xué)習(xí)辯證法,以洞察理念世界。經(jīng)過5年后,他就可以成為統(tǒng)治國家的哲學(xué)王了。他主張心身和諧發(fā)展,強(qiáng)調(diào)“用體育鍛煉身體,用音樂陶冶心靈”。柏拉圖豐富的體育思想對(duì)后世體育的發(fā)展有深遠(yuǎn)的影響。柏拉圖曾旅行到意大利南部,在那兒遇到畢達(dá)哥拉斯學(xué)派的學(xué)者,對(duì)他產(chǎn)生了影響:視數(shù)學(xué)為萬物的本質(zhì);宇宙二元論——真理(理念)世界和由影子組成的可見世界;對(duì)理論科學(xué)感興趣;宗教神秘主義和道德禁欲主義;靈魂的輪回和不朽。柏拉圖主義9教育是約束和指導(dǎo)青少年,培養(yǎng)他們正當(dāng)?shù)睦碇?。每個(gè)人最初所受教育的方向容易決定以后行為的性質(zhì),感召的力量是不小的。耐心是一切聰明才智的基礎(chǔ)。開始是工作的最重要部分。意志不純正,則學(xué)識(shí)足以為害。語言的美、樂調(diào)的美以及節(jié)奏的美,都表現(xiàn)好性情。所謂“好性情”并不是人們通常用來恭維愚笨的人的那個(gè)意思,而是心靈真正盡善盡美。技藝沒有知識(shí),他對(duì)于那種技藝的語言和作為,就不能作正確的判斷了。不知道自己的無知,乃是雙倍的無知。子女教育是社會(huì)的基礎(chǔ)。美具有引人向善的作用和力量。愛是美好帶來的歡欣,智慧創(chuàng)造的奇觀,神仙賦予的驚奇。尊重人不應(yīng)該勝過尊重真理。只要有信心,人永遠(yuǎn)不會(huì)挫敗。每天告訴自己一次:“我真的很不錯(cuò)”。
教育是約束和指導(dǎo)青少年,培養(yǎng)他們正當(dāng)?shù)睦碇恰C總€(gè)人最初所受教10柏拉圖主義(Platonism)是數(shù)學(xué)歷史上影響最大的數(shù)學(xué)哲學(xué)觀點(diǎn),在西方近現(xiàn)代數(shù)學(xué)界都有相當(dāng)大的影響,一些數(shù)學(xué)巨匠如G.康托爾、羅素、哥德爾、布爾巴基學(xué)派基本上都持這種觀點(diǎn)。它起源于古希臘的柏拉圖,此后在西方數(shù)學(xué)界一直有著或明或暗的柏拉圖主義觀念,19世紀(jì),它在數(shù)學(xué)界幾乎占了統(tǒng)治地。20世紀(jì)初,數(shù)學(xué)基礎(chǔ)三大學(xué)派的爭(zhēng)議剛趨平息,柏拉圖主義觀點(diǎn)又成為討論的熱點(diǎn)之一。
柏拉圖主義的基本觀點(diǎn):數(shù)學(xué)的對(duì)象就是數(shù)、量、函數(shù)等數(shù)學(xué)概念,而數(shù)學(xué)概念作為抽象一般或“共相”是客觀存在著的。柏拉圖認(rèn)為它們存在于一個(gè)特殊的理念世界里,后世的柏拉圖主義者并不接受“理念論”,但也認(rèn)為數(shù)學(xué)概念是一種特殊的獨(dú)立于現(xiàn)實(shí)世界之外的客觀存在,它們是不依賴于時(shí)間、空間和人的思維的永恒的存在。數(shù)學(xué)家得到新的概念不是創(chuàng)造,而是對(duì)這種客觀存在的描述;數(shù)學(xué)新成果不是發(fā)明,而是發(fā)現(xiàn)。與之相應(yīng)的,柏拉圖主義認(rèn)為數(shù)學(xué)理論的真理性就是客觀的由那種獨(dú)立于現(xiàn)實(shí)世界之外的存在決定的,而這種真理性是要靠“心智”經(jīng)驗(yàn)來理解,靠某種“數(shù)學(xué)直覺”來認(rèn)識(shí)的,人們只有通過直覺才能達(dá)到獨(dú)立于現(xiàn)實(shí)世界之外的“數(shù)學(xué)世界”。
柏拉圖主義(Platonism)是數(shù)學(xué)歷史上影響最大的數(shù)學(xué)哲11古典柏拉圖主義:“數(shù)學(xué)理念世界”數(shù)學(xué)觀。數(shù)學(xué)的理念世界是獨(dú)立于人的感性經(jīng)驗(yàn)之外的世界,是一種客觀存在著的完善的永恒世界。近代柏拉圖主義:上帝是用數(shù)學(xué)方案來構(gòu)造宇宙的,而尋求自然界的數(shù)學(xué)規(guī)律是對(duì)上帝智慧的證明;數(shù)學(xué)對(duì)象是具有客觀性的理念實(shí)體,需要通過理性的心智活動(dòng)去認(rèn)識(shí),而不應(yīng)受直觀感覺的約束;數(shù)學(xué)真理具有必然性和唯一性;數(shù)學(xué)僅僅是研究具有確定性的數(shù)量與空間形式的科學(xué),那些具有模糊性的或超越二值范疇的對(duì)象關(guān)系都不能作為數(shù)學(xué)對(duì)象?,F(xiàn)代柏拉圖主義的“先驗(yàn)論”/“實(shí)在主義”數(shù)學(xué)觀:數(shù)學(xué)對(duì)象是“客觀實(shí)在”(“數(shù)學(xué)實(shí)體”,哈代),是一些理想化的結(jié)構(gòu),這種理想結(jié)構(gòu)不同于物理世界的構(gòu)造,至多只存在某種近似的關(guān)聯(lián);數(shù)學(xué)真理是客觀存在的,而人們對(duì)其認(rèn)識(shí)不可能是完全的,數(shù)學(xué)發(fā)展到任何時(shí)候總有一批未解決的難題,而有許多問題結(jié)論的真假不能判定。(徐利治.數(shù)學(xué)中的現(xiàn)代柏拉圖主義與有關(guān)問題.數(shù)學(xué)教育學(xué)報(bào),2004,3.)古典柏拉圖主義:“數(shù)學(xué)理念世界”數(shù)學(xué)觀。數(shù)學(xué)的理念世界是獨(dú)立12近代以數(shù)學(xué)基礎(chǔ)三大學(xué)派的邏輯主義、形式主義、直覺主義所形成的數(shù)學(xué)觀為代表邏輯主義把數(shù)學(xué)化歸為邏輯
代表人物:英國著名數(shù)學(xué)家、哲學(xué)家、邏輯學(xué)家羅素(《數(shù)學(xué)哲學(xué)導(dǎo)論》)代表作:羅素,懷特海:《數(shù)學(xué)原理》。作者企圖在這3卷本的數(shù)學(xué)巨著中向人們說明:全部數(shù)學(xué)可以從邏輯概念出發(fā)用明顯的定義得出數(shù)學(xué)概念;由邏輯命題開始用純邏輯的演繹推得數(shù)學(xué)定理。從而,全部數(shù)學(xué)都可以從基本的邏輯概念和邏輯規(guī)則而推導(dǎo)出來。這樣,就可以把數(shù)學(xué)看成是邏輯學(xué)延伸或分支。故“邏輯學(xué)生數(shù)學(xué)的青年時(shí)代,而數(shù)學(xué)是邏輯學(xué)的壯年時(shí)代?!薄皵?shù)學(xué)即邏輯”(羅素)近代13在《數(shù)學(xué)原理》中,羅、懷通過純邏輯的途徑再加上集合論的選擇公理和無窮公理把當(dāng)時(shí)的數(shù)學(xué)嚴(yán)格的推導(dǎo)了出來。羅素宣稱:“從邏輯中展開純數(shù)學(xué)的工作,已由懷特海和我在《數(shù)學(xué)原理》中詳細(xì)地做了出來?!眴栴}是:數(shù)學(xué)的基礎(chǔ)是邏輯嗎?羅、懷的工作:在推導(dǎo)數(shù)學(xué)時(shí)使用集合論的兩個(gè)公理!這是不可缺的,否則不能完成。因?yàn)?,不用“無”則自然數(shù)系統(tǒng)無法構(gòu)造,更不要說全部數(shù)學(xué)了!→將數(shù)學(xué)化歸為邏輯還是集合論?要從邏輯推出全部數(shù)學(xué),就必須發(fā)展集合論,而集合論是自相矛盾的,沒有相容性。但是,在邏輯系統(tǒng)中是不允許矛盾的!因此,必須排除悖論?!皵?shù)學(xué)就是邏輯”,“一切數(shù)學(xué)思維都是邏輯思維”不被接受!在《數(shù)學(xué)原理》中,羅、懷通過純邏輯的途徑再加上集合論的選擇公14對(duì)《數(shù)學(xué)原理》的肯定“該書在20世紀(jì)的科學(xué)技術(shù)發(fā)展中影響很大。它以當(dāng)時(shí)最嚴(yán)格的形式化的符號(hào)語言來陳述作者建立的邏輯體系、定義和定理,從而標(biāo)準(zhǔn)符合邏輯方法的成功。并顯示了數(shù)學(xué)的邏輯基礎(chǔ)研究的意義,因而進(jìn)一步顯示了現(xiàn)代邏輯的科學(xué)意義”?!按藭诜椒ㄕ撋系囊饬x是不可忽視的。他們相當(dāng)成功的把古典數(shù)學(xué)納入了一個(gè)統(tǒng)一的公理系統(tǒng),使之能從幾個(gè)邏輯概念和公理出發(fā),再加上集合論的無窮公理就能推出康托集合論、一般算術(shù)和大部分?jǐn)?shù)學(xué)來。這把邏輯推理發(fā)展到前所未有的高度,使人們看到,在數(shù)理邏輯演算的基礎(chǔ)上能夠推演出許多數(shù)學(xué)內(nèi)容來,形成了集合論公理系統(tǒng)的邏輯體系,這種邏輯史上是一件大事,對(duì)數(shù)理邏輯后來的發(fā)展起來決定作用,是現(xiàn)代公理方法的一個(gè)重要起點(diǎn)。”對(duì)《數(shù)學(xué)原理》的肯定15什么是數(shù)學(xué)形式主義者要把數(shù)學(xué)組織成“形式系統(tǒng)”
代表人物:德國數(shù)學(xué)家希爾伯特非歐幾何:當(dāng)?shù)贸龌ハ嗝艿亩ɡ淼膬煞N幾何都證明不了自相矛盾的時(shí)候,數(shù)學(xué)的真理到底體現(xiàn)在哪里?為什么兩個(gè)幾何都成立?在數(shù)學(xué)與邏輯之間是存在有質(zhì)的區(qū)別的,不可能成功的把數(shù)學(xué)化歸為邏輯。什么是數(shù)學(xué)16只有有限的范疇才是絕對(duì)的可靠的,涉及無限是不那么可靠的,古典數(shù)學(xué)中包含了許多關(guān)于無限的概念和方法,所以是不那么可靠的。既要保留古典數(shù)學(xué),又要消除數(shù)學(xué)當(dāng)中出現(xiàn)的悖論。通過某些方法進(jìn)行處理,例如,簡(jiǎn)化證明,統(tǒng)一各種不同的理論,保存?zhèn)鹘y(tǒng)的邏輯法則,等等,我們?nèi)匀豢梢园逊怯邢薜囊蛩刈鳛槔硐朐匾氲綌?shù)學(xué)中來,問題的關(guān)鍵就是要證明這種引進(jìn)不會(huì)導(dǎo)致錯(cuò)誤。希爾伯特計(jì)劃
構(gòu)造出一個(gè)相容的、完備的、可判定的形式系統(tǒng),系統(tǒng)中的定理對(duì)應(yīng)于與直覺上為真的數(shù)學(xué)命題集,而且,關(guān)于相容的、完備的、可判定等性質(zhì)的證明又可以僅僅借助有限的方法得以實(shí)現(xiàn)。即用有限的方法證明由古典數(shù)學(xué)抽象而出的形式系統(tǒng)(首先是形式算術(shù)系統(tǒng))是相容的性,而“有限的方法”一般認(rèn)為總可以在算術(shù)系統(tǒng)內(nèi)得到表述。
只有有限的范疇才是絕對(duì)的可靠的,涉及無限是不那么可靠的,古典17希爾伯特規(guī)劃的提出,體現(xiàn)了一種新的數(shù)學(xué)思想,也就是所謂的形式主義數(shù)學(xué)觀:數(shù)學(xué)只是一組相容的、獨(dú)立的、完備的公理系,按照一定方式推理出來的一堆“形式”,與它表示的內(nèi)容無關(guān)?!磺袛?shù)學(xué)對(duì)象都只是無意義的符號(hào),數(shù)學(xué)命題則是按照指定的法則組成的符號(hào)序列,在數(shù)學(xué)中,我們要做的工作就是按照指定的法則對(duì)于無意義的符號(hào)序列去進(jìn)行純形式的變形。邏輯學(xué)家哥德爾證明了這一目標(biāo)是不可能實(shí)現(xiàn)的!哥德爾不完備性定理:所有以形式算術(shù)系統(tǒng)為子系統(tǒng)的形式系統(tǒng),如果是相容的,那它就一定是不完備的。也就是說,對(duì)于任何相容的形式系統(tǒng)來說,如果其中足以開展出適量的算術(shù)理論的話,那么,在這一系統(tǒng)中一定存在有這樣的命題,其自身及其否命題都不可能在這一系統(tǒng)中得到證明。
這樣,其目標(biāo)是把古典數(shù)學(xué)組織成相容的、完備的形式系統(tǒng)的希爾伯特規(guī)劃,也就被證明是不可能實(shí)現(xiàn)的了。
希爾伯特規(guī)劃的提出,體現(xiàn)了一種新的數(shù)學(xué)思想,也就是所謂的形式18希爾伯特的數(shù)學(xué)思想中有合理因素,但是,又有片面性:片面夸大有限和無限的對(duì)立性,完全否認(rèn)了包含有無限性成份的古典數(shù)學(xué)的客觀意義。關(guān)于有限的數(shù)學(xué)是絕對(duì)可靠的(從而可以成為全部數(shù)學(xué)的可靠基礎(chǔ))這一點(diǎn)是錯(cuò)誤的。因?yàn)槿魏我环N數(shù)學(xué)理論都只是一種相對(duì)真理,都有特定的適用范圍,所以認(rèn)為有限性數(shù)學(xué)是絕對(duì)可靠是錯(cuò)誤的。完全強(qiáng)調(diào)形式的研究,而忽視了內(nèi)容的分析是錯(cuò)誤的。雖然形式相對(duì)獨(dú)立于內(nèi)容,在一定的條件下,我們可以撇開具體的內(nèi)容去進(jìn)行純形式的研究,但是兩者又不能截然分開,因?yàn)樾问阶罱K又是由內(nèi)容所決定的。希爾伯特的數(shù)學(xué)思想中有合理因素,但是,又有片面性:19直覺主義者提出“存在必須等于被構(gòu)造”代表人物:荷蘭數(shù)學(xué)家,布勞維爾
直覺主義者認(rèn)為,數(shù)學(xué)主要是指人類的一種特殊的思維活動(dòng),而不是指經(jīng)由這種思維活動(dòng)發(fā)展起來的數(shù)學(xué)理論,這種思維活動(dòng)的主要特性在于它的“純主觀性”,即是建立在所謂的“純直覺”之上的,而且,這種純直覺又是完全不依賴語言(和邏輯的)。我們不能希望通過局部的修改或限制來解決數(shù)學(xué)的可靠性問題,而必須從根本上去重新考慮數(shù)學(xué)的性質(zhì)等基本問題?!爸庇X是數(shù)學(xué)的最終依據(jù)”.“存在必須等于被構(gòu)造?!?/p>
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件20什么是數(shù)學(xué)否定排中律,雙重否定律邏輯是數(shù)學(xué)的一部分對(duì)所有輯概念都予以“構(gòu)造性”的解釋,所有邏輯命題都具有“我已經(jīng)實(shí)現(xiàn)了具有如下性質(zhì)的一個(gè)構(gòu)造……”的形式。承認(rèn)p→~~p,而不承認(rèn)~~p→p
直覺主義者對(duì)于數(shù)學(xué)和邏輯研究是有一定的貢獻(xiàn)的:對(duì)數(shù)學(xué)中的定義和證明提出了一種更為嚴(yán)格的要求,為數(shù)學(xué)研究開拓了一個(gè)新的方向,對(duì)電子計(jì)算機(jī)的設(shè)計(jì)與改進(jìn)起著積極作用,肯定創(chuàng)造性思維的作用及數(shù)學(xué)的發(fā)展性,提出了構(gòu)造性與非構(gòu)造性數(shù)學(xué)的區(qū)分,揭示了古典數(shù)學(xué)與古典邏輯的相對(duì)性,等。什么是數(shù)學(xué)否定排中律,雙重否定律21直覺主義失敗分析:片面強(qiáng)調(diào)創(chuàng)造性思維在數(shù)學(xué)發(fā)展中的作用,把數(shù)學(xué)只歸結(jié)為對(duì)于人類思想的某種功能的研究,而且完全否認(rèn)了數(shù)學(xué)的客觀意義,從而就走上了唯心主義的錯(cuò)誤道路。片面地強(qiáng)調(diào)對(duì)于數(shù)學(xué)的動(dòng)態(tài)的研究,數(shù)學(xué)思想與語言形式被絕對(duì)地對(duì)立了起來,最終不可避免地導(dǎo)致了“數(shù)學(xué)神秘主義”。將直覺作為數(shù)學(xué)唯一可靠的基礎(chǔ),提出“存在必須等于被構(gòu)造”的原則,否定非構(gòu)造性數(shù)學(xué)即古典數(shù)學(xué)并對(duì)構(gòu)造性數(shù)學(xué)采取絕對(duì)肯定的態(tài)度,這是錯(cuò)誤的。絕對(duì)否定古典邏輯和絕對(duì)肯定直覺主義邏輯,這是錯(cuò)誤的。
直覺主義失敗分析:22
直覺主義并沒有真正實(shí)現(xiàn)按照構(gòu)造性的要求來重建古典數(shù)學(xué)(至少是其大部分)的目標(biāo)。與古典數(shù)學(xué)相比,直覺主義數(shù)學(xué)在很多場(chǎng)合下并沒有顯得更為“直接”或更為“明顯”,恰恰相反,某些部分反而表現(xiàn)出了更大的抽象性與復(fù)雜性。因此,在這樣的意義上,直覺主義數(shù)學(xué)也就并不比古典數(shù)學(xué)更為可靠。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件23數(shù)學(xué)基礎(chǔ)研究三大思潮的出現(xiàn),是當(dāng)時(shí)數(shù)學(xué)發(fā)展造成的,隨著數(shù)學(xué)基礎(chǔ)研究的逐步開展,與基礎(chǔ)問題有關(guān)的哲學(xué)思考就逐漸成為現(xiàn)代數(shù)學(xué)哲學(xué)研究的主要內(nèi)容。他們雖然失敗了,但他們的工作大大地促進(jìn)了數(shù)學(xué)基礎(chǔ)研究的發(fā)展。數(shù)學(xué)基礎(chǔ)研究三大思潮的出現(xiàn),是當(dāng)時(shí)數(shù)學(xué)發(fā)展造成的,隨著數(shù)學(xué)基24什么是數(shù)學(xué)現(xiàn)代Mathematics:powerfulpatternsinnatureandsociety.數(shù)學(xué):描繪自然與社會(huì)的有力模式(哈里?亨德森(作家、編輯,撰寫科技、計(jì)算機(jī)技術(shù)、數(shù)學(xué)、傳記、歷史圖書)):斐波那契數(shù)列統(tǒng)計(jì)學(xué)博弈論數(shù)字計(jì)算機(jī)分形奇點(diǎn)理論扭曲彭羅斯鋪砌蘭頓環(huán)通用計(jì)算機(jī)……絕對(duì)主義數(shù)學(xué)觀可誤主義數(shù)學(xué)觀社會(huì)建構(gòu)主義數(shù)學(xué)觀什么是數(shù)學(xué)現(xiàn)代25什么是數(shù)學(xué)由于觀察與思考的角度不同,有各種不同的描述恩格斯:數(shù)學(xué)是關(guān)于現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的科學(xué)。弗賴登塔爾:數(shù)學(xué)在現(xiàn)實(shí)世界中有它的現(xiàn)象學(xué)基礎(chǔ)。數(shù)學(xué)實(shí)質(zhì)上是人們常識(shí)的系統(tǒng)化。數(shù)學(xué)的概念、結(jié)構(gòu)與思想都是物理世界、社會(huì)存在與思維世界各種具體現(xiàn)象的反映,也是組織這些現(xiàn)象的工具。數(shù)學(xué)來源于現(xiàn)實(shí),存在于現(xiàn)實(shí),并且應(yīng)用于現(xiàn)實(shí)??聽柲缏宸颍簲?shù)學(xué)的研究對(duì)象產(chǎn)生于現(xiàn)實(shí),但數(shù)學(xué)又必須離開現(xiàn)實(shí)(抽象)。由于數(shù)學(xué)內(nèi)容不斷豐富,應(yīng)用范圍無限擴(kuò)大,因而并非完全脫離現(xiàn)實(shí)。所有數(shù)學(xué)的基礎(chǔ)是純集合論,數(shù)學(xué)的各專門分支研究各種各樣的結(jié)構(gòu),每一種結(jié)構(gòu)由相應(yīng)的公理體系所確定。什么是數(shù)學(xué)由于觀察與思考的角度不同,有各種不同的描述26從數(shù)學(xué)的研究方法來分析,有更大的分歧有人認(rèn)為,數(shù)學(xué)全然不涉及觀察、歸納、因果等方法;對(duì)人進(jìn)行的訓(xùn)練,全都是利用演繹方法;數(shù)學(xué)家工作的起點(diǎn),只需少數(shù)公理,一見就懂,無需證明,而其余的工作則都可由此推演出來。與此相反地,解決數(shù)學(xué)問題常常必須借助于新定理、新見解、新方法;在具體解決問題和從事研究的過程中,常常要進(jìn)行觀察和比較。在這其中,歸納法是十分常用的,而且需要依賴實(shí)際經(jīng)驗(yàn);數(shù)學(xué)家的工作,都離不開觀察、推測(cè)、歸納、實(shí)驗(yàn)、經(jīng)驗(yàn)、因果等方法。甚至,數(shù)學(xué)家還需要有高度的直覺和想象力。更有人聲稱,數(shù)學(xué)是證明與反駁的交互過程,數(shù)學(xué)從來不是嚴(yán)謹(jǐn)?shù)摹臄?shù)學(xué)的研究方法來分析,有更大的分歧27由于個(gè)體不同的知識(shí)背景,對(duì)數(shù)學(xué)的理解角度不同,就會(huì)有不同的回答。數(shù)學(xué)是一種語言數(shù)學(xué)是人類的一種活動(dòng)數(shù)學(xué)是科學(xué),數(shù)學(xué)也是一門技術(shù)數(shù)學(xué)是組織現(xiàn)實(shí)世界的工具數(shù)學(xué)是科學(xué),數(shù)學(xué)更是一門創(chuàng)造性的藝術(shù)數(shù)學(xué)是模式的科學(xué)數(shù)學(xué)是一種文化……由于個(gè)體不同的知識(shí)背景,對(duì)數(shù)學(xué)的理解角度不同,就會(huì)有不同的回28數(shù)學(xué)是一個(gè)多元的綜合體數(shù)學(xué)是一個(gè)多元的綜合產(chǎn)物,不能簡(jiǎn)單地將數(shù)學(xué)等同于命題和公式匯集成的邏輯體系。數(shù)學(xué)通過模式的構(gòu)建與現(xiàn)實(shí)世界密切聯(lián)系,但又借助抽象的方法,強(qiáng)調(diào)思維形式的探討;現(xiàn)代技術(shù)滲透于數(shù)學(xué)之中,成為數(shù)學(xué)的實(shí)質(zhì)性內(nèi)涵,但抽象的數(shù)學(xué)思維仍然是一種創(chuàng)造性的活動(dòng);數(shù)學(xué)是一種特殊的語言,由此形成的思維方式,不僅決定了人類對(duì)物質(zhì)世界的認(rèn)識(shí)方式,還對(duì)人類理性精神的發(fā)展具有重要的影響,因而必然成為人類文化的一個(gè)重要組成部分。數(shù)學(xué)是一個(gè)多元的綜合體29數(shù)學(xué)發(fā)展史上的四個(gè)高峰(2000年8月,日本東京ICME-9,藤田宏主席,P18):(1)以《幾何原本》為代表的古希臘的公理化數(shù)學(xué)(前700—300)(2)以牛頓發(fā)明微積分為代表的無窮小算法數(shù)學(xué)(17—18c)(3)以希爾伯特為代表的現(xiàn)代公理化數(shù)學(xué)(19—20c中葉)(4)以現(xiàn)代計(jì)算機(jī)技術(shù)為代表的信息時(shí)代數(shù)學(xué)(20c中葉—今)數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件30核心數(shù)學(xué)發(fā)展的特點(diǎn)(P20-21):線性→非線性(混沌、分形、動(dòng)力系統(tǒng)等研究迅速發(fā)展)交換→非交換(矩陣、算子的乘法都是不可交換的)一維→高維(特別是4維和無窮維)隨機(jī)數(shù)學(xué)和確定性數(shù)學(xué)、離散和連續(xù)、局部性質(zhì)和整體性質(zhì)間的對(duì)立與整合核心數(shù)學(xué)發(fā)展的特點(diǎn)(P20-21):31當(dāng)今數(shù)學(xué)科學(xué)的發(fā)展出現(xiàn)了三種新趨向內(nèi)部各分支相互滲透及與其他科學(xué)交叉融會(huì)計(jì)算機(jī)使得數(shù)學(xué)成立形式科學(xué)與實(shí)驗(yàn)科學(xué)兩種不同的知識(shí)類型的結(jié)合在思維形式與研究方法等各方面都需在差異中尋求平衡數(shù)學(xué)的應(yīng)用領(lǐng)域日趨廣泛20世紀(jì)數(shù)學(xué)觀的變化(P21)(1)公理化方法、形式演繹仍然是數(shù)學(xué)的特征之一,但是數(shù)學(xué)不等于形式,數(shù)學(xué)正在走出形式主義光環(huán)。(2)在計(jì)算機(jī)技術(shù)的支持下,數(shù)學(xué)注重應(yīng)用。(3)數(shù)學(xué)不等于邏輯,要做“好”數(shù)學(xué)。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件32不同的數(shù)學(xué)觀,會(huì)折射出不同的教學(xué)思想和行為,即決定了我們擁有怎樣的數(shù)學(xué)教學(xué)觀:如果把數(shù)學(xué)理解成一種科學(xué)語言→注重?cái)?shù)學(xué)語言的形成和師生間的平等對(duì)話和交流;如果認(rèn)為數(shù)學(xué)是一種工具→側(cè)重于對(duì)學(xué)習(xí)的記憶和訓(xùn)練,或者將數(shù)學(xué)應(yīng)用于解題和生活實(shí)際的問題中;如果是一種模型的數(shù)學(xué)觀→注重?cái)?shù)學(xué)模型的發(fā)生、抽象過程;如果認(rèn)為數(shù)學(xué)是一種文化→把數(shù)學(xué)納入到廣闊的社會(huì)文化中去,讓學(xué)生理解數(shù)學(xué)的理性精神、創(chuàng)新內(nèi)涵和思想方法。(林夏水
.數(shù)學(xué)觀對(duì)數(shù)學(xué)及其教育的影響.數(shù)學(xué)教育學(xué)報(bào)》2007年第04期
)不同的數(shù)學(xué)觀,會(huì)折射出不同的教學(xué)思想和行為,即決定了我們擁有33英國學(xué)者PaulErnest根據(jù)數(shù)學(xué)哲學(xué)及數(shù)學(xué)教學(xué)的實(shí)驗(yàn)研究,提出數(shù)學(xué)教師的三種數(shù)學(xué)觀及其在教學(xué)上的相應(yīng)表現(xiàn),認(rèn)為大致可歸結(jié)為以下三種類型:1)問題解決觀點(diǎn)
將數(shù)學(xué)看成是動(dòng)態(tài)的、以問題為主導(dǎo)和核心的過程.數(shù)學(xué)是一個(gè)不斷探索、不斷求真、不斷擴(kuò)大發(fā)展的過程.數(shù)學(xué)不是一個(gè)已經(jīng)完成的產(chǎn)品,其最終結(jié)果總是開放的,有待繼續(xù)修正.
教學(xué)表現(xiàn):強(qiáng)調(diào)數(shù)學(xué)教學(xué)是一種活動(dòng),主張“學(xué)數(shù)學(xué)就是做數(shù)學(xué)”,不僅關(guān)注知識(shí)的結(jié)果,更加注重獲得知識(shí)的過程,旨在鼓勵(lì)學(xué)生親身經(jīng)歷并進(jìn)入數(shù)學(xué)的生成發(fā)展過程.
英國學(xué)者PaulErnest根據(jù)數(shù)學(xué)哲學(xué)及數(shù)學(xué)教學(xué)的實(shí)驗(yàn)研34
2)柏拉圖的觀點(diǎn)
將數(shù)學(xué)看成是靜態(tài)的、統(tǒng)一的知識(shí)實(shí)體.數(shù)學(xué)是水晶般清澈的王國,其中包含有相互聯(lián)系的各種結(jié)構(gòu)與真理,并由邏輯的與內(nèi)在涵義形成的纖維,共同將其裝訂成一整體。數(shù)學(xué)是如磐石般穩(wěn)定的永遠(yuǎn)不變的產(chǎn)品。數(shù)學(xué)只能被發(fā)現(xiàn)而不能被創(chuàng)造。
教學(xué)表現(xiàn):強(qiáng)調(diào)數(shù)學(xué)作為嚴(yán)謹(jǐn)?shù)男问襟w系的整體結(jié)構(gòu),以概念為主導(dǎo),注重概念的內(nèi)涵,尤其重視推理的邏輯,強(qiáng)調(diào)關(guān)系,突出“為什么”,容許學(xué)生自己構(gòu)造算法,但必須考慮其可行性與相容性,以符合數(shù)學(xué)的純粹的形式法則。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件35
3)工具主義的觀點(diǎn)
將數(shù)學(xué)看成是一個(gè)工具袋,由各種事實(shí)、規(guī)則與技能累積而成,由于某些外部目標(biāo)的追求,而由那些熟練的工匠加以運(yùn)用。因而,數(shù)學(xué)只是一些互不相關(guān)但卻有用的規(guī)則與事實(shí)的集合。
教學(xué)表現(xiàn):教師按照傳統(tǒng)方式,突出對(duì)規(guī)則、步驟的演示,強(qiáng)調(diào)操練程序,不重視證明,甚至不允許超出課本中列出的算法,只要求學(xué)生能掌握根據(jù)教學(xué)目標(biāo)規(guī)定的熟練技能。作為個(gè)體,一個(gè)人對(duì)數(shù)學(xué)觀的認(rèn)識(shí)是從模糊、片面的到系統(tǒng)的,動(dòng)態(tài)的一個(gè)過程。你很有可能就停留在這一維度的某個(gè)中間點(diǎn)上。
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件36
數(shù)學(xué)教學(xué)觀——教師對(duì)數(shù)學(xué)本質(zhì)、學(xué)生學(xué)習(xí)數(shù)學(xué)的認(rèn)知過程以及教學(xué)形式和方法的認(rèn)識(shí)。數(shù)學(xué)教學(xué)觀——教師對(duì)數(shù)學(xué)本質(zhì)、學(xué)生學(xué)習(xí)37教學(xué)的語義分析漢語中“教學(xué)”及其語義的發(fā)展教學(xué)即學(xué)習(xí)教學(xué)即教授教學(xué)即教學(xué)生學(xué)教學(xué)即教師的教與學(xué)生的學(xué)英語中“teach”及其定義teach、learn、instructSmith,B.O.對(duì)英語國家teaching涵義的歸類什么是教學(xué)教學(xué)的語義分析什么是教學(xué)38教學(xué)的規(guī)定性定義教、教學(xué)經(jīng)常是通用的。教與學(xué)在理性思維中是可分的?!敖痰男袨椤笔墙虒W(xué)理論的中心問題。圍繞這一中心問題的是兩大問題:教是怎樣影響學(xué)的怎樣的教才是有效的教學(xué)(教)就是教師引起、維持和促進(jìn)學(xué)生學(xué)習(xí)的所有行為。教學(xué)行為即探究行為(教學(xué)即探究,教師即研究者)。引起學(xué)生學(xué)習(xí)的意向、明釋學(xué)生學(xué)習(xí)的內(nèi)容、采用易于學(xué)生覺知的方式是教學(xué)活動(dòng)的邏輯必要條件教學(xué)內(nèi)容、教師、學(xué)生是教學(xué)活動(dòng)最基本的構(gòu)成要素教學(xué)的規(guī)定性定義39教學(xué)活動(dòng)的本質(zhì)特殊認(rèn)識(shí)說、發(fā)展說、實(shí)踐說、交往說——觀察教學(xué)本質(zhì)的基本維度:過程、功能、關(guān)系教學(xué)的基本問題教學(xué)中的人際關(guān)系掌握知識(shí)與發(fā)展智力教學(xué)中的認(rèn)知與情感接受學(xué)習(xí)與發(fā)現(xiàn)學(xué)習(xí)教學(xué)活動(dòng)的本質(zhì)40樹立現(xiàn)代數(shù)學(xué)教學(xué)觀樹立現(xiàn)代數(shù)學(xué)教學(xué)觀純數(shù)學(xué)的為什么要進(jìn)行數(shù)學(xué)教學(xué)怎樣進(jìn)行數(shù)學(xué)教學(xué)數(shù)學(xué)教學(xué)的目標(biāo)是什么人本主義的實(shí)用主義的數(shù)學(xué)學(xué)習(xí)活動(dòng)的本質(zhì)是什么數(shù)學(xué)教學(xué)活動(dòng)的本質(zhì)是什么教學(xué)內(nèi)容的科學(xué)性教學(xué)方法的科學(xué)性被動(dòng)吸收主動(dòng)建構(gòu)授予促進(jìn)和增強(qiáng)學(xué)習(xí)者的數(shù)學(xué)學(xué)習(xí)過程樹立現(xiàn)代數(shù)學(xué)教學(xué)觀樹立現(xiàn)代數(shù)學(xué)教學(xué)觀純數(shù)學(xué)的為什么要進(jìn)行數(shù)學(xué)41
20世紀(jì)我國數(shù)學(xué)教學(xué)觀的現(xiàn)代化:
(見教材P27-32)1)關(guān)心教師的“教”→也關(guān)注學(xué)生的“學(xué)”2)“雙基”+“三力”觀點(diǎn)的形成→更寬廣的能力觀和素質(zhì)觀(提出、分析和解決問題的能力;創(chuàng)新意識(shí)與應(yīng)用意識(shí);數(shù)學(xué)探究能力;數(shù)學(xué)建模能力;數(shù)學(xué)交流能力;數(shù)學(xué)實(shí)踐能力)3)聽課、閱讀、演題→提倡實(shí)驗(yàn)、討論、探索的學(xué)習(xí)方式4)看重?cái)?shù)學(xué)的抽象、嚴(yán)謹(jǐn)→關(guān)注數(shù)學(xué)文化、數(shù)學(xué)探究和數(shù)學(xué)應(yīng)用20世紀(jì)我國數(shù)學(xué)教學(xué)觀的現(xiàn)代化:(見教材P27-32)421.數(shù)學(xué)觀與數(shù)學(xué)教學(xué)的關(guān)系如何?2.試談?wù)勎覈鴶?shù)學(xué)教學(xué)觀產(chǎn)生了哪些變化?3.構(gòu)建現(xiàn)代的數(shù)學(xué)觀及數(shù)學(xué)教學(xué)觀。下次課:數(shù)學(xué)概念的邏輯結(jié)構(gòu)思考1.數(shù)學(xué)觀與數(shù)學(xué)教學(xué)的關(guān)系如何?思考43理解概念的內(nèi)涵和外延、概念間的關(guān)系,掌握概念定義的方法以及概念分類的方法。下課,再見!理解概念的內(nèi)涵和外延、概念間的關(guān)系,掌握概念定義的方法以及概44
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀
45數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀——對(duì)數(shù)學(xué)和數(shù)學(xué)教學(xué)本質(zhì)問題的回答數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件46數(shù)學(xué)觀——人們對(duì)數(shù)學(xué)的性質(zhì)、任務(wù)、來源、以及數(shù)學(xué)與人類社會(huì)各個(gè)領(lǐng)域的知識(shí)之間的關(guān)系的認(rèn)識(shí)。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件47數(shù)學(xué)是科學(xué)的女王數(shù)學(xué)是一種別具匠心的藝術(shù)數(shù)學(xué)是符號(hào)加邏輯數(shù)學(xué)是人類的思考中最高的成就數(shù)學(xué)是研究抽象結(jié)構(gòu)的理論數(shù)學(xué)是上帝描述自然的符號(hào)數(shù)支配著宇宙數(shù)學(xué)是一種會(huì)不斷進(jìn)化的文化數(shù)學(xué)是一切知識(shí)中的最高形式數(shù)學(xué)是人類智慧皇冠上最燦爛的明珠數(shù)學(xué)是知識(shí)的工具,亦是其它知識(shí)工具的泉源。所有研究順序和度量的科學(xué)均和數(shù)學(xué)有關(guān)數(shù)學(xué)是一種理性的精神,使人類的思維得以運(yùn)用到最完善的程度給我空間、時(shí)間、及對(duì)數(shù),我可以創(chuàng)造一個(gè)宇宙自然界的書是用數(shù)學(xué)的語言寫成的數(shù)學(xué)是各式各樣的證明技巧第一是數(shù)學(xué),第二是數(shù)學(xué),第三是數(shù)學(xué)……什么是數(shù)學(xué)數(shù)學(xué)是科學(xué)的女王什么是數(shù)學(xué)48數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué)。數(shù)學(xué)與人類發(fā)展和社會(huì)進(jìn)步息息相關(guān),隨著現(xiàn)代信息技術(shù)的飛速發(fā)展,數(shù)學(xué)更加廣泛應(yīng)用于社會(huì)生產(chǎn)和日常生活的各個(gè)方面。數(shù)學(xué)作為對(duì)客觀現(xiàn)象抽象概括而逐漸形成的科學(xué)語言與工具,不僅是自然科學(xué)和技術(shù)科學(xué)的基礎(chǔ),而且在人文科學(xué)與社會(huì)科學(xué)中發(fā)揮著越來越大的作用。特別是20世紀(jì)中葉以來,數(shù)學(xué)與計(jì)算機(jī)技術(shù)的結(jié)合在許多方面直接為社會(huì)創(chuàng)造價(jià)值,推動(dòng)著社會(huì)生產(chǎn)力的發(fā)展。。(全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(修改稿),2011年)什么是數(shù)學(xué)數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué)。數(shù)學(xué)與人類發(fā)展和社會(huì)進(jìn)步49什么是數(shù)學(xué)不同歷史時(shí)期有很不相同、很不一致的觀點(diǎn)古代中國:數(shù)學(xué)是術(shù),是用來解決生產(chǎn)與生活問題的計(jì)算方法。古希臘:數(shù)學(xué)是理念,是關(guān)于世界本質(zhì)的學(xué)問,數(shù)學(xué)對(duì)象是一種不依賴于人類思維的客觀存在,但可以通過親身體驗(yàn),借助實(shí)驗(yàn)、觀察和抽象獲得有關(guān)的知識(shí)。代表人物:畢達(dá)哥拉斯、柏拉圖,強(qiáng)調(diào)數(shù)量關(guān)系是現(xiàn)實(shí)的本質(zhì),自然界是按數(shù)學(xué)方式設(shè)計(jì)的,并且這個(gè)設(shè)計(jì)是和諧優(yōu)美的內(nèi)部真理。(張維忠.論數(shù)學(xué)觀的演變.大自然探索,1998,1.)什么是數(shù)學(xué)不同歷史時(shí)期有很不相同、很不一致的觀點(diǎn)(張維忠.論50什么是數(shù)學(xué)畢達(dá)哥拉斯學(xué)派神秘主義數(shù)學(xué)觀
畢達(dá)哥拉斯(Pythagoras,572BC—497BC)古希臘數(shù)學(xué)家、哲學(xué)家。無論是解說外在物質(zhì)世界,還是描寫內(nèi)在精神世界,都不能沒有數(shù)學(xué)!最早悟出萬事萬物背后都有數(shù)的法則在起作用的,是生活在2500年前的畢達(dá)哥拉斯。
畢達(dá)哥拉斯學(xué)派:亦稱“南意大利學(xué)派”,是一個(gè)集政治、學(xué)術(shù)、宗教三位于一體的組織。古希臘哲學(xué)家畢達(dá)哥拉斯所創(chuàng)立。產(chǎn)生于公元前6世紀(jì)末,公元前5世紀(jì)被迫解散,其成員大多是數(shù)學(xué)家、天文學(xué)家、音樂家。它是西方美學(xué)史上最早探討美的本質(zhì)的學(xué)派。
數(shù)是宇宙萬物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,萬物按照一定的數(shù)量比例而構(gòu)成和諧的秩序什么是數(shù)學(xué)畢達(dá)哥拉斯學(xué)派神秘主義數(shù)學(xué)觀51“萬物皆數(shù)”:“1”是數(shù)的第一原則,萬物之母,也是智慧;“2”是對(duì)立和否定的原則,是意見;“3”是萬物的形體和形式;“4”是正義,是宇宙創(chuàng)造者的象征;“5”是奇數(shù)和偶數(shù),雄性與雌性和結(jié)合,也是婚姻;“6”是神的生命,是靈魂;“7”是機(jī)會(huì);“8”是和諧,也是愛情和友誼;“9”是理性和強(qiáng)大;“10”包容了一切數(shù)目,是完滿和美好。
“美是和諧”:數(shù)是音樂和諧的基礎(chǔ)。他們發(fā)現(xiàn),音樂的和諧是由高低長(zhǎng)短輕重不同的音調(diào)按照一定的數(shù)量上的比例組成,當(dāng)一根琴弦被縮短到原來長(zhǎng)度的一半時(shí),撥動(dòng)琴弦,音調(diào)將提高8度;比率為3∶2和4∶3時(shí),相對(duì)應(yīng)的是高5度和高4度的和聲。和聲就是由這樣一些不同的部分組成的整體。他們認(rèn)為,正是由于各種事物的數(shù)值比確定了它們分別是什么,并顯示出彼此之間的關(guān)系。
“萬物皆數(shù)”:“1”是數(shù)的第一原則,萬物之母,也是智慧;“252柏拉圖主義柏拉圖(Plato,Πλ?των,約前427年-前347年),古希臘偉大的哲學(xué)家,也是全部西方哲學(xué)乃至整個(gè)西方文化最偉大的哲學(xué)家和思想家之一,他和老師蘇格拉底,學(xué)生亞里士多德并稱為古希臘三大哲學(xué)家。柏拉圖還是西方教育史上第一個(gè)提出完整的學(xué)前教育思想并建立了完整的教育體系的人。柏拉圖指出了每門學(xué)科對(duì)于發(fā)展抽象思維的意義。從20~30歲,那些對(duì)抽象思維表現(xiàn)特殊興趣的學(xué)生就要繼續(xù)深造,學(xué)習(xí)算術(shù)、幾何、天文學(xué)與和聲學(xué)等學(xué)科,以鍛煉他的思考能力,使他開始探索宇宙的奧妙。主張未來的統(tǒng)治者在30歲以后,要進(jìn)一步學(xué)習(xí)辯證法,以洞察理念世界。經(jīng)過5年后,他就可以成為統(tǒng)治國家的哲學(xué)王了。他主張心身和諧發(fā)展,強(qiáng)調(diào)“用體育鍛煉身體,用音樂陶冶心靈”。柏拉圖豐富的體育思想對(duì)后世體育的發(fā)展有深遠(yuǎn)的影響。柏拉圖曾旅行到意大利南部,在那兒遇到畢達(dá)哥拉斯學(xué)派的學(xué)者,對(duì)他產(chǎn)生了影響:視數(shù)學(xué)為萬物的本質(zhì);宇宙二元論——真理(理念)世界和由影子組成的可見世界;對(duì)理論科學(xué)感興趣;宗教神秘主義和道德禁欲主義;靈魂的輪回和不朽。柏拉圖主義53教育是約束和指導(dǎo)青少年,培養(yǎng)他們正當(dāng)?shù)睦碇?。每個(gè)人最初所受教育的方向容易決定以后行為的性質(zhì),感召的力量是不小的。耐心是一切聰明才智的基礎(chǔ)。開始是工作的最重要部分。意志不純正,則學(xué)識(shí)足以為害。語言的美、樂調(diào)的美以及節(jié)奏的美,都表現(xiàn)好性情。所謂“好性情”并不是人們通常用來恭維愚笨的人的那個(gè)意思,而是心靈真正盡善盡美。技藝沒有知識(shí),他對(duì)于那種技藝的語言和作為,就不能作正確的判斷了。不知道自己的無知,乃是雙倍的無知。子女教育是社會(huì)的基礎(chǔ)。美具有引人向善的作用和力量。愛是美好帶來的歡欣,智慧創(chuàng)造的奇觀,神仙賦予的驚奇。尊重人不應(yīng)該勝過尊重真理。只要有信心,人永遠(yuǎn)不會(huì)挫敗。每天告訴自己一次:“我真的很不錯(cuò)”。
教育是約束和指導(dǎo)青少年,培養(yǎng)他們正當(dāng)?shù)睦碇恰C總€(gè)人最初所受教54柏拉圖主義(Platonism)是數(shù)學(xué)歷史上影響最大的數(shù)學(xué)哲學(xué)觀點(diǎn),在西方近現(xiàn)代數(shù)學(xué)界都有相當(dāng)大的影響,一些數(shù)學(xué)巨匠如G.康托爾、羅素、哥德爾、布爾巴基學(xué)派基本上都持這種觀點(diǎn)。它起源于古希臘的柏拉圖,此后在西方數(shù)學(xué)界一直有著或明或暗的柏拉圖主義觀念,19世紀(jì),它在數(shù)學(xué)界幾乎占了統(tǒng)治地。20世紀(jì)初,數(shù)學(xué)基礎(chǔ)三大學(xué)派的爭(zhēng)議剛趨平息,柏拉圖主義觀點(diǎn)又成為討論的熱點(diǎn)之一。
柏拉圖主義的基本觀點(diǎn):數(shù)學(xué)的對(duì)象就是數(shù)、量、函數(shù)等數(shù)學(xué)概念,而數(shù)學(xué)概念作為抽象一般或“共相”是客觀存在著的。柏拉圖認(rèn)為它們存在于一個(gè)特殊的理念世界里,后世的柏拉圖主義者并不接受“理念論”,但也認(rèn)為數(shù)學(xué)概念是一種特殊的獨(dú)立于現(xiàn)實(shí)世界之外的客觀存在,它們是不依賴于時(shí)間、空間和人的思維的永恒的存在。數(shù)學(xué)家得到新的概念不是創(chuàng)造,而是對(duì)這種客觀存在的描述;數(shù)學(xué)新成果不是發(fā)明,而是發(fā)現(xiàn)。與之相應(yīng)的,柏拉圖主義認(rèn)為數(shù)學(xué)理論的真理性就是客觀的由那種獨(dú)立于現(xiàn)實(shí)世界之外的存在決定的,而這種真理性是要靠“心智”經(jīng)驗(yàn)來理解,靠某種“數(shù)學(xué)直覺”來認(rèn)識(shí)的,人們只有通過直覺才能達(dá)到獨(dú)立于現(xiàn)實(shí)世界之外的“數(shù)學(xué)世界”。
柏拉圖主義(Platonism)是數(shù)學(xué)歷史上影響最大的數(shù)學(xué)哲55古典柏拉圖主義:“數(shù)學(xué)理念世界”數(shù)學(xué)觀。數(shù)學(xué)的理念世界是獨(dú)立于人的感性經(jīng)驗(yàn)之外的世界,是一種客觀存在著的完善的永恒世界。近代柏拉圖主義:上帝是用數(shù)學(xué)方案來構(gòu)造宇宙的,而尋求自然界的數(shù)學(xué)規(guī)律是對(duì)上帝智慧的證明;數(shù)學(xué)對(duì)象是具有客觀性的理念實(shí)體,需要通過理性的心智活動(dòng)去認(rèn)識(shí),而不應(yīng)受直觀感覺的約束;數(shù)學(xué)真理具有必然性和唯一性;數(shù)學(xué)僅僅是研究具有確定性的數(shù)量與空間形式的科學(xué),那些具有模糊性的或超越二值范疇的對(duì)象關(guān)系都不能作為數(shù)學(xué)對(duì)象?,F(xiàn)代柏拉圖主義的“先驗(yàn)論”/“實(shí)在主義”數(shù)學(xué)觀:數(shù)學(xué)對(duì)象是“客觀實(shí)在”(“數(shù)學(xué)實(shí)體”,哈代),是一些理想化的結(jié)構(gòu),這種理想結(jié)構(gòu)不同于物理世界的構(gòu)造,至多只存在某種近似的關(guān)聯(lián);數(shù)學(xué)真理是客觀存在的,而人們對(duì)其認(rèn)識(shí)不可能是完全的,數(shù)學(xué)發(fā)展到任何時(shí)候總有一批未解決的難題,而有許多問題結(jié)論的真假不能判定。(徐利治.數(shù)學(xué)中的現(xiàn)代柏拉圖主義與有關(guān)問題.數(shù)學(xué)教育學(xué)報(bào),2004,3.)古典柏拉圖主義:“數(shù)學(xué)理念世界”數(shù)學(xué)觀。數(shù)學(xué)的理念世界是獨(dú)立56近代以數(shù)學(xué)基礎(chǔ)三大學(xué)派的邏輯主義、形式主義、直覺主義所形成的數(shù)學(xué)觀為代表邏輯主義把數(shù)學(xué)化歸為邏輯
代表人物:英國著名數(shù)學(xué)家、哲學(xué)家、邏輯學(xué)家羅素(《數(shù)學(xué)哲學(xué)導(dǎo)論》)代表作:羅素,懷特海:《數(shù)學(xué)原理》。作者企圖在這3卷本的數(shù)學(xué)巨著中向人們說明:全部數(shù)學(xué)可以從邏輯概念出發(fā)用明顯的定義得出數(shù)學(xué)概念;由邏輯命題開始用純邏輯的演繹推得數(shù)學(xué)定理。從而,全部數(shù)學(xué)都可以從基本的邏輯概念和邏輯規(guī)則而推導(dǎo)出來。這樣,就可以把數(shù)學(xué)看成是邏輯學(xué)延伸或分支。故“邏輯學(xué)生數(shù)學(xué)的青年時(shí)代,而數(shù)學(xué)是邏輯學(xué)的壯年時(shí)代?!薄皵?shù)學(xué)即邏輯”(羅素)近代57在《數(shù)學(xué)原理》中,羅、懷通過純邏輯的途徑再加上集合論的選擇公理和無窮公理把當(dāng)時(shí)的數(shù)學(xué)嚴(yán)格的推導(dǎo)了出來。羅素宣稱:“從邏輯中展開純數(shù)學(xué)的工作,已由懷特海和我在《數(shù)學(xué)原理》中詳細(xì)地做了出來。”問題是:數(shù)學(xué)的基礎(chǔ)是邏輯嗎?羅、懷的工作:在推導(dǎo)數(shù)學(xué)時(shí)使用集合論的兩個(gè)公理!這是不可缺的,否則不能完成。因?yàn)椋挥谩盁o”則自然數(shù)系統(tǒng)無法構(gòu)造,更不要說全部數(shù)學(xué)了!→將數(shù)學(xué)化歸為邏輯還是集合論?要從邏輯推出全部數(shù)學(xué),就必須發(fā)展集合論,而集合論是自相矛盾的,沒有相容性。但是,在邏輯系統(tǒng)中是不允許矛盾的!因此,必須排除悖論?!皵?shù)學(xué)就是邏輯”,“一切數(shù)學(xué)思維都是邏輯思維”不被接受!在《數(shù)學(xué)原理》中,羅、懷通過純邏輯的途徑再加上集合論的選擇公58對(duì)《數(shù)學(xué)原理》的肯定“該書在20世紀(jì)的科學(xué)技術(shù)發(fā)展中影響很大。它以當(dāng)時(shí)最嚴(yán)格的形式化的符號(hào)語言來陳述作者建立的邏輯體系、定義和定理,從而標(biāo)準(zhǔn)符合邏輯方法的成功。并顯示了數(shù)學(xué)的邏輯基礎(chǔ)研究的意義,因而進(jìn)一步顯示了現(xiàn)代邏輯的科學(xué)意義”?!按藭诜椒ㄕ撋系囊饬x是不可忽視的。他們相當(dāng)成功的把古典數(shù)學(xué)納入了一個(gè)統(tǒng)一的公理系統(tǒng),使之能從幾個(gè)邏輯概念和公理出發(fā),再加上集合論的無窮公理就能推出康托集合論、一般算術(shù)和大部分?jǐn)?shù)學(xué)來。這把邏輯推理發(fā)展到前所未有的高度,使人們看到,在數(shù)理邏輯演算的基礎(chǔ)上能夠推演出許多數(shù)學(xué)內(nèi)容來,形成了集合論公理系統(tǒng)的邏輯體系,這種邏輯史上是一件大事,對(duì)數(shù)理邏輯后來的發(fā)展起來決定作用,是現(xiàn)代公理方法的一個(gè)重要起點(diǎn)?!睂?duì)《數(shù)學(xué)原理》的肯定59什么是數(shù)學(xué)形式主義者要把數(shù)學(xué)組織成“形式系統(tǒng)”
代表人物:德國數(shù)學(xué)家希爾伯特非歐幾何:當(dāng)?shù)贸龌ハ嗝艿亩ɡ淼膬煞N幾何都證明不了自相矛盾的時(shí)候,數(shù)學(xué)的真理到底體現(xiàn)在哪里?為什么兩個(gè)幾何都成立?在數(shù)學(xué)與邏輯之間是存在有質(zhì)的區(qū)別的,不可能成功的把數(shù)學(xué)化歸為邏輯。什么是數(shù)學(xué)60只有有限的范疇才是絕對(duì)的可靠的,涉及無限是不那么可靠的,古典數(shù)學(xué)中包含了許多關(guān)于無限的概念和方法,所以是不那么可靠的。既要保留古典數(shù)學(xué),又要消除數(shù)學(xué)當(dāng)中出現(xiàn)的悖論。通過某些方法進(jìn)行處理,例如,簡(jiǎn)化證明,統(tǒng)一各種不同的理論,保存?zhèn)鹘y(tǒng)的邏輯法則,等等,我們?nèi)匀豢梢园逊怯邢薜囊蛩刈鳛槔硐朐匾氲綌?shù)學(xué)中來,問題的關(guān)鍵就是要證明這種引進(jìn)不會(huì)導(dǎo)致錯(cuò)誤。希爾伯特計(jì)劃
構(gòu)造出一個(gè)相容的、完備的、可判定的形式系統(tǒng),系統(tǒng)中的定理對(duì)應(yīng)于與直覺上為真的數(shù)學(xué)命題集,而且,關(guān)于相容的、完備的、可判定等性質(zhì)的證明又可以僅僅借助有限的方法得以實(shí)現(xiàn)。即用有限的方法證明由古典數(shù)學(xué)抽象而出的形式系統(tǒng)(首先是形式算術(shù)系統(tǒng))是相容的性,而“有限的方法”一般認(rèn)為總可以在算術(shù)系統(tǒng)內(nèi)得到表述。
只有有限的范疇才是絕對(duì)的可靠的,涉及無限是不那么可靠的,古典61希爾伯特規(guī)劃的提出,體現(xiàn)了一種新的數(shù)學(xué)思想,也就是所謂的形式主義數(shù)學(xué)觀:數(shù)學(xué)只是一組相容的、獨(dú)立的、完備的公理系,按照一定方式推理出來的一堆“形式”,與它表示的內(nèi)容無關(guān)?!磺袛?shù)學(xué)對(duì)象都只是無意義的符號(hào),數(shù)學(xué)命題則是按照指定的法則組成的符號(hào)序列,在數(shù)學(xué)中,我們要做的工作就是按照指定的法則對(duì)于無意義的符號(hào)序列去進(jìn)行純形式的變形。邏輯學(xué)家哥德爾證明了這一目標(biāo)是不可能實(shí)現(xiàn)的!哥德爾不完備性定理:所有以形式算術(shù)系統(tǒng)為子系統(tǒng)的形式系統(tǒng),如果是相容的,那它就一定是不完備的。也就是說,對(duì)于任何相容的形式系統(tǒng)來說,如果其中足以開展出適量的算術(shù)理論的話,那么,在這一系統(tǒng)中一定存在有這樣的命題,其自身及其否命題都不可能在這一系統(tǒng)中得到證明。
這樣,其目標(biāo)是把古典數(shù)學(xué)組織成相容的、完備的形式系統(tǒng)的希爾伯特規(guī)劃,也就被證明是不可能實(shí)現(xiàn)的了。
希爾伯特規(guī)劃的提出,體現(xiàn)了一種新的數(shù)學(xué)思想,也就是所謂的形式62希爾伯特的數(shù)學(xué)思想中有合理因素,但是,又有片面性:片面夸大有限和無限的對(duì)立性,完全否認(rèn)了包含有無限性成份的古典數(shù)學(xué)的客觀意義。關(guān)于有限的數(shù)學(xué)是絕對(duì)可靠的(從而可以成為全部數(shù)學(xué)的可靠基礎(chǔ))這一點(diǎn)是錯(cuò)誤的。因?yàn)槿魏我环N數(shù)學(xué)理論都只是一種相對(duì)真理,都有特定的適用范圍,所以認(rèn)為有限性數(shù)學(xué)是絕對(duì)可靠是錯(cuò)誤的。完全強(qiáng)調(diào)形式的研究,而忽視了內(nèi)容的分析是錯(cuò)誤的。雖然形式相對(duì)獨(dú)立于內(nèi)容,在一定的條件下,我們可以撇開具體的內(nèi)容去進(jìn)行純形式的研究,但是兩者又不能截然分開,因?yàn)樾问阶罱K又是由內(nèi)容所決定的。希爾伯特的數(shù)學(xué)思想中有合理因素,但是,又有片面性:63直覺主義者提出“存在必須等于被構(gòu)造”代表人物:荷蘭數(shù)學(xué)家,布勞維爾
直覺主義者認(rèn)為,數(shù)學(xué)主要是指人類的一種特殊的思維活動(dòng),而不是指經(jīng)由這種思維活動(dòng)發(fā)展起來的數(shù)學(xué)理論,這種思維活動(dòng)的主要特性在于它的“純主觀性”,即是建立在所謂的“純直覺”之上的,而且,這種純直覺又是完全不依賴語言(和邏輯的)。我們不能希望通過局部的修改或限制來解決數(shù)學(xué)的可靠性問題,而必須從根本上去重新考慮數(shù)學(xué)的性質(zhì)等基本問題?!爸庇X是數(shù)學(xué)的最終依據(jù)”.“存在必須等于被構(gòu)造?!?/p>
數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件64什么是數(shù)學(xué)否定排中律,雙重否定律邏輯是數(shù)學(xué)的一部分對(duì)所有輯概念都予以“構(gòu)造性”的解釋,所有邏輯命題都具有“我已經(jīng)實(shí)現(xiàn)了具有如下性質(zhì)的一個(gè)構(gòu)造……”的形式。承認(rèn)p→~~p,而不承認(rèn)~~p→p
直覺主義者對(duì)于數(shù)學(xué)和邏輯研究是有一定的貢獻(xiàn)的:對(duì)數(shù)學(xué)中的定義和證明提出了一種更為嚴(yán)格的要求,為數(shù)學(xué)研究開拓了一個(gè)新的方向,對(duì)電子計(jì)算機(jī)的設(shè)計(jì)與改進(jìn)起著積極作用,肯定創(chuàng)造性思維的作用及數(shù)學(xué)的發(fā)展性,提出了構(gòu)造性與非構(gòu)造性數(shù)學(xué)的區(qū)分,揭示了古典數(shù)學(xué)與古典邏輯的相對(duì)性,等。什么是數(shù)學(xué)否定排中律,雙重否定律65直覺主義失敗分析:片面強(qiáng)調(diào)創(chuàng)造性思維在數(shù)學(xué)發(fā)展中的作用,把數(shù)學(xué)只歸結(jié)為對(duì)于人類思想的某種功能的研究,而且完全否認(rèn)了數(shù)學(xué)的客觀意義,從而就走上了唯心主義的錯(cuò)誤道路。片面地強(qiáng)調(diào)對(duì)于數(shù)學(xué)的動(dòng)態(tài)的研究,數(shù)學(xué)思想與語言形式被絕對(duì)地對(duì)立了起來,最終不可避免地導(dǎo)致了“數(shù)學(xué)神秘主義”。將直覺作為數(shù)學(xué)唯一可靠的基礎(chǔ),提出“存在必須等于被構(gòu)造”的原則,否定非構(gòu)造性數(shù)學(xué)即古典數(shù)學(xué)并對(duì)構(gòu)造性數(shù)學(xué)采取絕對(duì)肯定的態(tài)度,這是錯(cuò)誤的。絕對(duì)否定古典邏輯和絕對(duì)肯定直覺主義邏輯,這是錯(cuò)誤的。
直覺主義失敗分析:66
直覺主義并沒有真正實(shí)現(xiàn)按照構(gòu)造性的要求來重建古典數(shù)學(xué)(至少是其大部分)的目標(biāo)。與古典數(shù)學(xué)相比,直覺主義數(shù)學(xué)在很多場(chǎng)合下并沒有顯得更為“直接”或更為“明顯”,恰恰相反,某些部分反而表現(xiàn)出了更大的抽象性與復(fù)雜性。因此,在這樣的意義上,直覺主義數(shù)學(xué)也就并不比古典數(shù)學(xué)更為可靠。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件67數(shù)學(xué)基礎(chǔ)研究三大思潮的出現(xiàn),是當(dāng)時(shí)數(shù)學(xué)發(fā)展造成的,隨著數(shù)學(xué)基礎(chǔ)研究的逐步開展,與基礎(chǔ)問題有關(guān)的哲學(xué)思考就逐漸成為現(xiàn)代數(shù)學(xué)哲學(xué)研究的主要內(nèi)容。他們雖然失敗了,但他們的工作大大地促進(jìn)了數(shù)學(xué)基礎(chǔ)研究的發(fā)展。數(shù)學(xué)基礎(chǔ)研究三大思潮的出現(xiàn),是當(dāng)時(shí)數(shù)學(xué)發(fā)展造成的,隨著數(shù)學(xué)基68什么是數(shù)學(xué)現(xiàn)代Mathematics:powerfulpatternsinnatureandsociety.數(shù)學(xué):描繪自然與社會(huì)的有力模式(哈里?亨德森(作家、編輯,撰寫科技、計(jì)算機(jī)技術(shù)、數(shù)學(xué)、傳記、歷史圖書)):斐波那契數(shù)列統(tǒng)計(jì)學(xué)博弈論數(shù)字計(jì)算機(jī)分形奇點(diǎn)理論扭曲彭羅斯鋪砌蘭頓環(huán)通用計(jì)算機(jī)……絕對(duì)主義數(shù)學(xué)觀可誤主義數(shù)學(xué)觀社會(huì)建構(gòu)主義數(shù)學(xué)觀什么是數(shù)學(xué)現(xiàn)代69什么是數(shù)學(xué)由于觀察與思考的角度不同,有各種不同的描述恩格斯:數(shù)學(xué)是關(guān)于現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的科學(xué)。弗賴登塔爾:數(shù)學(xué)在現(xiàn)實(shí)世界中有它的現(xiàn)象學(xué)基礎(chǔ)。數(shù)學(xué)實(shí)質(zhì)上是人們常識(shí)的系統(tǒng)化。數(shù)學(xué)的概念、結(jié)構(gòu)與思想都是物理世界、社會(huì)存在與思維世界各種具體現(xiàn)象的反映,也是組織這些現(xiàn)象的工具。數(shù)學(xué)來源于現(xiàn)實(shí),存在于現(xiàn)實(shí),并且應(yīng)用于現(xiàn)實(shí)??聽柲缏宸颍簲?shù)學(xué)的研究對(duì)象產(chǎn)生于現(xiàn)實(shí),但數(shù)學(xué)又必須離開現(xiàn)實(shí)(抽象)。由于數(shù)學(xué)內(nèi)容不斷豐富,應(yīng)用范圍無限擴(kuò)大,因而并非完全脫離現(xiàn)實(shí)。所有數(shù)學(xué)的基礎(chǔ)是純集合論,數(shù)學(xué)的各專門分支研究各種各樣的結(jié)構(gòu),每一種結(jié)構(gòu)由相應(yīng)的公理體系所確定。什么是數(shù)學(xué)由于觀察與思考的角度不同,有各種不同的描述70從數(shù)學(xué)的研究方法來分析,有更大的分歧有人認(rèn)為,數(shù)學(xué)全然不涉及觀察、歸納、因果等方法;對(duì)人進(jìn)行的訓(xùn)練,全都是利用演繹方法;數(shù)學(xué)家工作的起點(diǎn),只需少數(shù)公理,一見就懂,無需證明,而其余的工作則都可由此推演出來。與此相反地,解決數(shù)學(xué)問題常常必須借助于新定理、新見解、新方法;在具體解決問題和從事研究的過程中,常常要進(jìn)行觀察和比較。在這其中,歸納法是十分常用的,而且需要依賴實(shí)際經(jīng)驗(yàn);數(shù)學(xué)家的工作,都離不開觀察、推測(cè)、歸納、實(shí)驗(yàn)、經(jīng)驗(yàn)、因果等方法。甚至,數(shù)學(xué)家還需要有高度的直覺和想象力。更有人聲稱,數(shù)學(xué)是證明與反駁的交互過程,數(shù)學(xué)從來不是嚴(yán)謹(jǐn)?shù)摹臄?shù)學(xué)的研究方法來分析,有更大的分歧71由于個(gè)體不同的知識(shí)背景,對(duì)數(shù)學(xué)的理解角度不同,就會(huì)有不同的回答。數(shù)學(xué)是一種語言數(shù)學(xué)是人類的一種活動(dòng)數(shù)學(xué)是科學(xué),數(shù)學(xué)也是一門技術(shù)數(shù)學(xué)是組織現(xiàn)實(shí)世界的工具數(shù)學(xué)是科學(xué),數(shù)學(xué)更是一門創(chuàng)造性的藝術(shù)數(shù)學(xué)是模式的科學(xué)數(shù)學(xué)是一種文化……由于個(gè)體不同的知識(shí)背景,對(duì)數(shù)學(xué)的理解角度不同,就會(huì)有不同的回72數(shù)學(xué)是一個(gè)多元的綜合體數(shù)學(xué)是一個(gè)多元的綜合產(chǎn)物,不能簡(jiǎn)單地將數(shù)學(xué)等同于命題和公式匯集成的邏輯體系。數(shù)學(xué)通過模式的構(gòu)建與現(xiàn)實(shí)世界密切聯(lián)系,但又借助抽象的方法,強(qiáng)調(diào)思維形式的探討;現(xiàn)代技術(shù)滲透于數(shù)學(xué)之中,成為數(shù)學(xué)的實(shí)質(zhì)性內(nèi)涵,但抽象的數(shù)學(xué)思維仍然是一種創(chuàng)造性的活動(dòng);數(shù)學(xué)是一種特殊的語言,由此形成的思維方式,不僅決定了人類對(duì)物質(zhì)世界的認(rèn)識(shí)方式,還對(duì)人類理性精神的發(fā)展具有重要的影響,因而必然成為人類文化的一個(gè)重要組成部分。數(shù)學(xué)是一個(gè)多元的綜合體73數(shù)學(xué)發(fā)展史上的四個(gè)高峰(2000年8月,日本東京ICME-9,藤田宏主席,P18):(1)以《幾何原本》為代表的古希臘的公理化數(shù)學(xué)(前700—300)(2)以牛頓發(fā)明微積分為代表的無窮小算法數(shù)學(xué)(17—18c)(3)以希爾伯特為代表的現(xiàn)代公理化數(shù)學(xué)(19—20c中葉)(4)以現(xiàn)代計(jì)算機(jī)技術(shù)為代表的信息時(shí)代數(shù)學(xué)(20c中葉—今)數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件74核心數(shù)學(xué)發(fā)展的特點(diǎn)(P20-21):線性→非線性(混沌、分形、動(dòng)力系統(tǒng)等研究迅速發(fā)展)交換→非交換(矩陣、算子的乘法都是不可交換的)一維→高維(特別是4維和無窮維)隨機(jī)數(shù)學(xué)和確定性數(shù)學(xué)、離散和連續(xù)、局部性質(zhì)和整體性質(zhì)間的對(duì)立與整合核心數(shù)學(xué)發(fā)展的特點(diǎn)(P20-21):75當(dāng)今數(shù)學(xué)科學(xué)的發(fā)展出現(xiàn)了三種新趨向內(nèi)部各分支相互滲透及與其他科學(xué)交叉融會(huì)計(jì)算機(jī)使得數(shù)學(xué)成立形式科學(xué)與實(shí)驗(yàn)科學(xué)兩種不同的知識(shí)類型的結(jié)合在思維形式與研究方法等各方面都需在差異中尋求平衡數(shù)學(xué)的應(yīng)用領(lǐng)域日趨廣泛20世紀(jì)數(shù)學(xué)觀的變化(P21)(1)公理化方法、形式演繹仍然是數(shù)學(xué)的特征之一,但是數(shù)學(xué)不等于形式,數(shù)學(xué)正在走出形式主義光環(huán)。(2)在計(jì)算機(jī)技術(shù)的支持下,數(shù)學(xué)注重應(yīng)用。(3)數(shù)學(xué)不等于邏輯,要做“好”數(shù)學(xué)。數(shù)學(xué)觀與數(shù)學(xué)教學(xué)觀解答課件76不同的數(shù)學(xué)觀,會(huì)折射出不同的教學(xué)思想和行為,即決定了我們擁有怎樣的數(shù)學(xué)教學(xué)觀:如果把數(shù)學(xué)理解成一種科學(xué)語言→注重?cái)?shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年專用打印機(jī)采購銷售協(xié)議范本
- 2024年個(gè)人借款協(xié)議模板
- 2024年家用壁紙買賣協(xié)議模板
- 2023-2024學(xué)年浙江省余姚八中高考第四次模擬數(shù)學(xué)試題試卷
- 2024年企業(yè)融資中介協(xié)議范本
- 2024無財(cái)產(chǎn)瓜分離婚協(xié)議示范文本
- DB11∕T 1717-2020 動(dòng)物實(shí)驗(yàn)管理與技術(shù)規(guī)范
- DB11∕T 1601-2018 毛白楊繁育技術(shù)規(guī)程
- 2024設(shè)備維護(hù)與保養(yǎng)協(xié)議范本
- 2024年專業(yè)收銀員崗位聘用協(xié)議樣本
- 酒店的基本概念
- 重點(diǎn)但位消防安全標(biāo)準(zhǔn)化管理評(píng)分細(xì)則自評(píng)表
- 掛牌儀式流程方案
- 傳輸s385v200v210安裝手冊(cè)
- 風(fēng)險(xiǎn)調(diào)查表(企業(yè)財(cái)產(chǎn)保險(xiǎn))
- 農(nóng)業(yè)信息技術(shù) chapter5 地理信息系統(tǒng)
- 淺談新形勢(shì)下加強(qiáng)企業(yè)稅務(wù)管理的對(duì)策研究
- 必看!設(shè)備管理必須要懂的一、二、三、四、五
- 空冷島專題(控制方案、諧波及變壓器容量選擇)
- 結(jié)合子的機(jī)械加工工藝規(guī)程及銑槽的夾具設(shè)計(jì)
- 液氧汽化站安全技術(shù)操作規(guī)程2018-07.docx
評(píng)論
0/150
提交評(píng)論