2022年江西省吉安市遂川縣數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
2022年江西省吉安市遂川縣數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
2022年江西省吉安市遂川縣數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
2022年江西省吉安市遂川縣數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
2022年江西省吉安市遂川縣數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或12.下列是電視臺的臺標,屬于中心對稱圖形的是()A. B. C. D.3.已知如圖,則下列4個三角形中,與相似的是()A. B.C. D.4.如圖,拋物線與軸交于點,對稱軸為,則下列結論中正確的是()A.B.當時,隨的增大而增大C.D.是一元二次方程的一個根5.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.6.一個扇形半徑30cm,圓心角120°,用它作一個圓錐的側面,則圓錐底面半徑為()A.5cm B.10cm C.20cm D.30cm7.下列事件中,為必然事件的是()A.購買一張彩票,中獎B.打開電視,正在播放廣告C.任意購買一張電影票,座位號恰好是“排號”D.一個袋中只裝有個黑球,從中摸出一個球是黑球8.下列說法正確的是()A.三點確定一個圓B.同圓中,圓周角等于圓心角的一半C.平分弦的直徑垂直于弦D.一個三角形只有一個外接圓9.拋物線y=﹣x2+1向右平移2個單位長度,再向下平移3個長度單位得到的拋物線解析式是()A.y=﹣(x﹣2)2+4 B.y=﹣(x﹣2)2﹣2C.y=﹣(x+2)2+4 D.y=﹣(x+2)2﹣210.下列四個圖形是中心對稱圖形().A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,點B是反比例函數(shù)y=(x>0)的圖象上任意一點,AB∥x軸并交反比例函數(shù)y=﹣(x<0)的圖象于點A,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則平行四邊形ABCD的面積為_____.12.點關于軸的對稱點的坐標是__________.13.已知y=x2+(1﹣a)x+2是關于x的二次函數(shù),當x的取值范圍是0≤x≤4時,y僅在x=4時取得最大值,則實數(shù)a的取值范圍是_____.14.在Rt△ABC中,AC:BC=1:2,則sinB=______.15.如圖1,點M,N,P,Q分別在矩形ABCD的邊AB,BC,CD,DA上,我們稱四邊形MNPQ是矩形ABCD的內接四邊形.已知矩形ABCD,AB=2BC=6,若它的內接四邊形MNPQ也是矩形,且相鄰兩邊的比為3:1,則AM=_____.16.如圖,在中,,于,已知,則__________.17.若實數(shù)、滿足,則以、的值為邊長的等腰三角形的周長為.18.2018年10月21日,重慶市第八屆中小學藝術工作坊在渝北區(qū)空港新城小學體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術特色.組委會準備為現(xiàn)場展示的參賽選手購買三種紀念品,其中甲紀念品5元/件,乙紀念品7元/件,丙紀念品10元/件.要求購買乙紀念品數(shù)量是丙紀念品數(shù)量的2倍,總費用為346元.若使購買的紀念品總數(shù)最多,則應購買紀念品共_____件.三、解答題(共66分)19.(10分)如圖,,射線于點,是線段上一點,是射線上一點,且滿足.(1)若,求的長;(2)當?shù)拈L為何值時,的長最大,并求出這個最大值.20.(6分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,6),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式;(2)當C為拋物線頂點的時候,求的面積.(3)是否存在質疑的點P,使的面積有最大值,若存在,求出這個最大值,若不存在,請說明理由.21.(6分)已知二次函數(shù)的圖象經過點.(1)求這個函數(shù)的解析式;(2)畫出它的簡圖,并指出圖象的頂點坐標;(3)結合圖象直接寫出使的的取值范圍.22.(8分)如圖,點是二次函數(shù)圖像上的任意一點,點在軸上.(1)以點為圓心,長為半徑作.①直線經過點且與軸平行,判斷與直線的位置關系,并說明理由.②若與軸相切,求出點坐標;(2)、、是這條拋物線上的三點,若線段、、的長滿足,則稱是、的和諧點,記做.已知、的橫坐標分別是,,直接寫出的坐標_______.23.(8分)如圖,正方形ABCD的邊長為2,點E是AD邊上的動點,從點A開始沿AD向D運動.以BE為邊,在BE的上方作正方形BEFG,EF交DC于點H,連接CG、BH.請?zhí)骄浚海?)線段AE與CG是否相等?請說明理由.(2)若設AE=x,DH=y,當x取何值時,y最大?最大值是多少?(3)當點E運動到AD的何位置時,△BEH∽△BAE?24.(8分)如圖,已知直線與兩坐標軸分別交于A、B兩點,拋物線經過點A、B,點P為直線AB上的一個動點,過P作y軸的平行線與拋物線交于C點,拋物線與x軸另一個交點為D.(1)求圖中拋物線的解析式;(2)當點P在線段AB上運動時,求線段PC的長度的最大值;(3)在直線AB上是否存在點P,使得以O、A、P、C為頂點的四邊形是平行四邊形?若存在,請求出此時點P的坐標,若不存在,請說明理由.25.(10分)已知在平面直角坐標系xOy中,拋物線(b為常數(shù))的對稱軸是直線x=1.(1)求該拋物線的表達式;(2)點A(8,m)在該拋物線上,它關于該拋物線對稱軸對稱的點為A',求點A'的坐標;(3)選取適當?shù)臄?shù)據填入下表,并在如圖5所示的平面直角坐標系內描點,畫出該拋物線.26.(10分)在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.2、C【解析】根據中心對稱圖形的概念即可求解.【詳解】A、不是中心對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,故此選項錯誤;

C、是中心對稱圖形,故此選項正確;

D、不是中心對稱圖形,故此選項錯誤.

故選:C.【點睛】本題考查了中心對稱圖形的概念:在同一平面內,如果把一個圖形繞某一點旋轉180度,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.3、C【分析】根據相似三角形的判定定理逐一分析即可.【詳解】解:∵AB=AC=6,∠B=75°∴∠B=∠C=75°∴∠A=180°-∠B-∠C=30°,對于A選項,如下圖所示∵,但∠A≠∠E∴與△EFD不相似,故本選項不符合題意;對于B選項,如下圖所示∵DE=DF=EF∴△DEF是等邊三角形∴∠E=60°∴,但∠A≠∠E∴與△EFD不相似,故本選項不符合題意;對于C選項,如下圖所示∵,∠A=∠E=30°∴∽△EFD,故本選項符合題意;對于D選項,如下圖所示∵,但∠A≠∠D∴與△DEF不相似,故本選項不符合題意;故選C.【點睛】此題考查的是相似三角形的判定,掌握有兩組對應邊對應成比例,且夾角相等的兩個三角形相似是解決此題的關鍵.4、D【解析】根據二次函數(shù)圖象的開口方向向下可得a是負數(shù),與y軸的交點在正半軸可得c是正數(shù),根據二次函數(shù)的增減性可得B選項錯誤,根據拋物線的對稱軸結合與x軸的一個交點的坐標可以求出與x軸的另一交點坐標,也就是一元二次方程ax2+bx+c=0的根,從而得解.【詳解】A、根據圖象,二次函數(shù)開口方向向下,∴a<0,故本選項錯誤;B、當x>1時,y隨x的增大而減小,故本選項錯誤;C、根據圖象,拋物線與y軸的交點在正半軸,∴c>0,故本選項錯誤;D、∵拋物線與x軸的一個交點坐標是(?1,0),對稱軸是x=1,設另一交點為(x,0),?1+x=2×1,x=3,∴另一交點坐標是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一個根,故本選項正確.故選:D.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)圖象的增減性,拋物線與x軸的交點問題,熟記二次函數(shù)的性質以及函數(shù)圖象與系數(shù)的關系是解題的關鍵.5、C【解析】先根據規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質,根據新定義得出函數(shù)y=2★x的解析式是解題的關鍵.6、B【解析】試題解析:設此圓錐的底面半徑為r,2πr=,r=10cm故選B.考點:弧長的計算.7、D【分析】根據必然事件的概念對各選項分析判斷即可.【詳解】解:A、購買一張彩票,有可能中獎,也有可能不中獎,是隨機事件,故A不合題意;B、打開電視,可能正在播放廣告,也可能在播放其他節(jié)目,是隨機事件,故B不合題意;C、購買電影票時,可能恰好是“7排8號”,也可能是其他位置,是隨機事件,故C不合題意;D、從只裝有5個黑球的袋子中摸出一個球,摸出的肯定是黑球,是必然事件,故D符合題意;故選D.【點睛】本題主要考查確定事件;在一定的條件下重復進行試驗時,有的事件在每次試驗中必然會發(fā)生,這樣的事件叫做必然發(fā)生的事件,簡稱必然事件.8、D【分析】由垂徑定理的推論、圓周角定理、確定圓的條件和三角形外心的性質進行判斷【詳解】解:A、平面內不共線的三點確定一個圓,所以A錯誤;B、在同圓或等圓中,同弧所對的圓周角等于它所對的圓心角的一半,所以B錯誤;C、平分弦(非直徑)的直徑垂直于弦,所以C錯誤;D、一個三角形只有一個外接圓,所以D正確.故答案為D.【點睛】本題考查了垂徑定理、圓周角定理以及確定圓的條件,靈活應用圓的知識是解答本題的關鍵.9、B【分析】根據“上加下減,左加右減”的原則進行解答即可.【詳解】解:由“左加右減”的原則可知,將拋物線y=﹣x2+1向右平移2個單位長度所得的拋物線的解析式為:y=﹣(x﹣2)2+1.再向下平移3個單位長度所得拋物線的解析式為:y=﹣(x﹣2)2﹣2.故選:B.【點睛】本題考查了二次函數(shù)圖象的平移,其規(guī)律是:將二次函數(shù)解析式轉化成頂點式y(tǒng)=a(x-h)2+k

(a,b,c為常數(shù),a≠0),確定其頂點坐標(h,k),在原有函數(shù)的基礎上“h值正右移,負左移;k值正上移,負下移”.10、C【分析】根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、填空題(每小題3分,共24分)11、1.【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得AB的橫坐標,則AB的長度即可求得,然后利用平行四邊形的面積公式即可求解【詳解】設A的縱坐標是b,則B的縱坐標也是b把y=b代入y=得,b=則x=,即B的橫坐標是同理可得:A的橫坐標是:則AB=-()=則S=×b=1.故答案為1【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于設A的縱坐標為b12、【分析】根據對稱點的特征即可得出答案.【詳解】點關于軸的對稱點的坐標是,故答案為.【點睛】本題考查的是點的對稱,比較簡單,需要熟練掌握相關基礎知識.13、a<1【分析】先求出拋物線的對稱軸,再根據二次函數(shù)的增減性列出不等式,求解即可.【詳解】解:∵0≤x≤4時,y僅在x=4時取得最大值,∴﹣<,解得a<1.故答案為:a<1.【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的增減性和對稱軸公式是解題的關鍵.14、或【分析】根據可知,因此分和兩種情況討論,當時,;當時,利用勾股定理求出斜邊AB,再由即可得.【詳解】(1)當時,BC為斜邊,AC為所對的直角邊則(2)當時,AB為斜邊,AC為所對的直角邊設,則由勾股定理得:則綜上,答案為或.【點睛】本題考查了直角三角形中銳角三角函數(shù),熟記銳角三角函數(shù)的計算方法是解題關鍵.15、【分析】證明△AMQ∽△DQP,△PCN∽△NBM,設MA=x,則DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=9x﹣3,NB=27x﹣9,表示出NC,由BC長為3,可得方程,解方程即可得解.【詳解】解:∵四邊形ABCD和四邊形MNPQ為矩形,∴∠D=∠A=90°,∠DQP=∠QMA,∴△AMQ∽△DQP,同理△PCM∽△NBM,設MA=x,∵PQ:QM=3:1,∴DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=6﹣(9﹣9x)=9x﹣3,NB=3PC=27x﹣9,BM=6﹣x,∴NC=,∴=3,解得x=.即AM=.故答案為:.【點睛】本題考查矩形的性質,相似三角形的判定與性質,關鍵是熟練掌握相似三角形的判定與性質及方程的思想方法.16、【分析】根據,可設AC=4x,BC=5x,利用勾股定理可得AB=3x,則.【詳解】在Rt△ABC中,∵∴設AC=4x,BC=5x∴∴故答案為:.【點睛】本題考查求正切值,熟練掌握三角函數(shù)的定義是解題的關鍵.17、1.【解析】先根據非負數(shù)的性質列式求出x、y的值,再分4是腰長與底邊兩種情況討論求解:根據題意得,x﹣4=0,y﹣2=0,解得x=4,y=2.①4是腰長時,三角形的三邊分別為4、4、2,∵4+4=2,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、2、2,能組成三角形,周長=4+2+2=1.所以,三角形的周長為1.18、2【分析】設購買甲紀念品x件,丙紀念品y件,則購進乙紀念品2y件,根據總價=單價×數(shù)量,即可得出關于x,y的二元一次方程,結合x,y均為非負整數(shù),即可求出x,y的值,進而可得出(x+y+2y)的值,取其最大值即可得出答案.【詳解】設購買甲紀念品x件,丙紀念品y件,則購進乙紀念品2y件,依題意,得:5x+7×2y+10y=346,∴x=,∵x,y均為非負整數(shù),∴346﹣24y為5的整數(shù)倍,∴y的尾數(shù)為4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以購買2件紀念品.故答案為:2.【點睛】本題主要考查二元一次方程的實際應用,根據題意,求出x,y的非負整數(shù)解,是解題的關鍵.三、解答題(共66分)19、(1);(2)當時,的最大值為1.【分析】(1)先利用互余的關系求得,再證明,根據對應邊成比例即可求得答案;(2)設為,則,根據,求得,利用二次函數(shù)的最值問題即可解決.【詳解】(1)如圖,∵,∴,∴,∵,∴,∴,可知,∴,∵,∴,∴,∴;(2)設為,則,∵(1)可得,∴,∴,∴,∴當時,的最大值為1.【點睛】本題主要考查了相似三角形的判定和性質以及二次函數(shù)等綜合知識,根據線段比例來求線段的長是本題解題的基本思路.20、(1);(2)(3)存在,(m為點P的橫坐標)當m=時,【分析】(1)把A、B坐標代入二次函數(shù)解析式,求出a、b,即可求得解析式;(2)根據第(1)問求出的函數(shù)解析式可得出C點的坐標,根據C、P兩點橫坐標一樣可得出P點的坐標,將△BCE的面積分成△PCE與△PCB,以PC為底,即可求出△BCE的面積.(3)設動點P的坐標為(m,m+2),點C的坐標為(m,),表示出PC的長度,根據,構造二次函數(shù),然后求出二次函數(shù)的最大值,并求出此時m的值即可.【詳解】解:(1)∵A()和B(4,6)在拋物線y=ax2+bx+6上,∴解得:,∴拋物線的解析式;(2)∵二次函數(shù)解析式為,∴頂點C坐標為,∵PC⊥x,點P在直線y=x+2上,∴點P的坐標為,∴PC=6;∵點E為直線y=x+2與x軸的交點,∴點E的坐標為∵=∴.(3)存在.設動點P的坐標是,點C的坐標為,∵∴∵,∴函數(shù)開口向下,有最大值∴當時,△ABC的面積有最大值為.【點睛】本題考查二次函數(shù)的綜合應用.(1)中考查利用待定系數(shù)發(fā)求函數(shù)解析式,注意求出函數(shù)解析式后要再驗算一遍,因為第一問的結果涉及后面幾問的計算,所以一定要保證正確;(2)中考查三角形面積的計算,坐標系中三角形面積要以坐標軸或者平行于坐標軸的邊為底,如果沒有的話要利用割補法進行計算;(3)在(2)的基礎上,求動點形成的三角形面積的最值,要設動點的坐標,然后構造相應的函數(shù)解析式,再分析最值.21、(1);(1)圖見解析,頂點坐標是;(3)或.【分析】(1)利用待定系數(shù)法求解即可;(1)先化為,即可得出頂點坐標,并作出圖像;(3)根據圖象即可得出,或時,y≥1.【詳解】(1)函數(shù)的圖象經過點,∴9+3-1=1,解得,∴函數(shù)的解析式為;(1)如圖,頂點坐標是;(3)當時,解得:根據圖象知,當或時,,∴使的的取值范圍是或.【點睛】考查待定系數(shù)法求二次函數(shù)的解析式以及函數(shù)圖象的性質,要根據圖象所在的位置關系求相關的變量的取值范圍.22、(1)①與直線相切.理由見解析;②或;(2)或.【分析】(1)①作直線的垂線,利用兩點之間的距離公式及二次函數(shù)圖象上點的特征證明線段相等即可;②利用兩點之間的距離公式及二次函數(shù)圖象上點的特征構建方程即可求得答案.(2)利用兩點之間的距離公式分別求得各線段的長,根據“和諧點”的定義及二次函數(shù)圖象上點的特征構建方程即可求得答案.【詳解】(1)①與直線相切.如圖,過作直線,垂足為,設.則,,即:與直線相切.②當與軸相切時∴,,即:代入化簡得:或.解得:,.或.(2)已知、的橫坐標分別是,,代入二次函數(shù)的解析式得:,,設,∵點B的坐標為,∴,,,依題意得:,即,,即:,∴(不合題意,舍去)或,把,代入得:直接開平方解得:,,∴的坐標為:或【點睛】本題主要考查了兩點之間的距離公式二次函數(shù)的性質,利用兩點之間的距離公式及二次函數(shù)圖象上點的特征構建方程是解題的關鍵.23、(1)AE=CG,見解析;(2)當x=1時,y有最大值,為;(3)當E點是AD的中點時,△BEH∽△BAE,見解析.【解析】(1)由正方形的性質可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可證△ABE≌△CBG,可得AE=CG;(2)由正方形的性質可得∠A=∠D=∠FEB=90°,由余角的性質可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函數(shù)的性質可求最大值;(3)當E點是AD的中點時,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可證△BEH∽△BAE.【詳解】(1)AE=CG,理由如下:∵四邊形ABCD,四邊形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四邊形ABCD,四邊形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴當x=1時,y有最大值為;(3)當E點是AD的中點時,△BEH∽△BAE,理由如下:∵E是AD中點,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.【點睛】本題是相似形綜合題,考查了相似三角形的判定和性質,正方形的性質,二次函數(shù)的性質,靈活運用這些性質進行推理是本題的關鍵.24、(1);(2)當時,線段PC有最大值是2;(3),,【分析】把x=0,y=0分別代入解析式可求點A,點B坐標,由待定系數(shù)法可求解析式;設點C,可求PC,由二次函數(shù)的性質可求解;設點P的坐標為(x,?x+2),則點C,分三種情況討論,由平行四邊形的性質可出點P的坐標.【詳解】解:(1)可求得A(0,2),B(4,0)∵拋物線經過點A和點B∴把(0,2),(4,0)分別代入得:解得:∴拋物線的解析式為.(2)設點P的坐標為(x,?x+2),則C()∵點P在線段AB上∴∴當時,線段PC有最大值是2(3)設點P的坐標為(x,?x+2),∵PC⊥x軸,∴點C的橫坐標為x,又點C在拋物線上,∴點C(x,)①當點P在第一象限時,假設存在這樣的點P,使四邊形AOPC為平行四邊形,則OA=PC=2,即,化簡得:,解得x1=x2=2把x=2代入則點P的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論