2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市三中高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市三中高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市三中高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市三中高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2022-2023學(xué)年寧夏回族自治區(qū)石嘴山市三中高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.42.函數(shù)的部分圖象大致為()A. B.C. D.3.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或4.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.5.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.6.已知,滿(mǎn)足約束條件,則的最大值為A. B. C. D.7.已知直線過(guò)雙曲線C:的左焦點(diǎn)F,且與雙曲線C在第二象限交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為A. B. C. D.8.已知向量,,則向量在向量上的投影是()A. B. C. D.9.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.下邊程序框圖的算法源于我國(guó)古代的中國(guó)剩余定理.把運(yùn)算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1911.已知定點(diǎn),,是圓上的任意一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,線段的垂直平分線與直線相交于點(diǎn),則點(diǎn)的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓12.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)2次拋擲一顆質(zhì)地均勻的骰子(六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點(diǎn)數(shù),則事件“點(diǎn)數(shù)之積是3的倍數(shù)”的概率為_(kāi)___.14.設(shè)集合,(其中e是自然對(duì)數(shù)的底數(shù)),且,則滿(mǎn)足條件的實(shí)數(shù)a的個(gè)數(shù)為_(kāi)_____.15.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____16.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點(diǎn)Q為AE的中點(diǎn).(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程與曲線的直角坐標(biāo)方程;(2)若射線與和分別交于點(diǎn),求.20.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶(hù)前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說(shuō)明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)若,求曲線與的交點(diǎn)坐標(biāo);(2)過(guò)曲線上任意一點(diǎn)作與夾角為45°的直線,交于點(diǎn),且的最大值為,求的值.22.(10分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開(kāi)計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿(mǎn)足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.2、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻?,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B?!军c(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。3、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.4、A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.5、D【解析】

設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.6、D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.7、B【解析】

直線的傾斜角為,易得.設(shè)雙曲線C的右焦點(diǎn)為E,可得中,,則,所以雙曲線C的離心率為.故選B.8、A【解析】

先利用向量坐標(biāo)運(yùn)算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點(diǎn)睛】本題考查了向量加法、減法的坐標(biāo)運(yùn)算和向量投影的概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9、C【解析】

恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿(mǎn)足的條件.【詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.10、B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量的值,模擬程序的運(yùn)行過(guò)程,代入四個(gè)選項(xiàng)進(jìn)行驗(yàn)證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點(diǎn)睛】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用循環(huán)模擬或代入選項(xiàng)驗(yàn)證的方法進(jìn)行解答.11、B【解析】

根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因?yàn)榫€段的垂直平分線與直線相交于點(diǎn),如下圖所示:所以有,而是中點(diǎn),連接,故,因此當(dāng)在如下圖所示位置時(shí)有,所以有,而是中點(diǎn),連接,故,因此,綜上所述:有,所以點(diǎn)的軌跡是雙曲線.故選:B【點(diǎn)睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運(yùn)算能力和推理論證能力,考查了分類(lèi)討論思想.12、B【解析】

由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.【點(diǎn)睛】本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】總事件數(shù)為,目標(biāo)事件:當(dāng)?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當(dāng)?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標(biāo)事件共20中,所以。14、【解析】

可看出,這樣根據(jù)即可得出,從而得出滿(mǎn)足條件的實(shí)數(shù)的個(gè)數(shù)為1.【詳解】解:,或,在同一平面直角坐標(biāo)系中畫(huà)出函數(shù)與的圖象,由圖可知與無(wú)交點(diǎn),無(wú)解,則滿(mǎn)足條件的實(shí)數(shù)的個(gè)數(shù)為.故答案為:.【點(diǎn)睛】考查列舉法的定義,交集的定義及運(yùn)算,以及知道方程無(wú)解,屬于基礎(chǔ)題.15、【解析】

根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.16、【解析】

不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:【點(diǎn)睛】本題主要考查幾何體的切割問(wèn)題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)連接交于點(diǎn),連接,通過(guò)證明,證得平面.(2)建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,計(jì)算出線面角的正弦值.【詳解】(1)證明:連接交于點(diǎn),連接,因?yàn)樗倪呅螢檎叫?,所以點(diǎn)為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以;平面平面,平面.(2)解:,設(shè),則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標(biāo)系.在等腰梯形中,可得.則.那么設(shè)平面的法向量為,則有,即,取,得.設(shè)與平面所成的角為,則.所以與平面所成角的正弦值為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)?;(Ⅱ)因?yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.19、(1):;:.(2)【解析】

(1)由可得,由,消去參數(shù),可得直線的普通方程為.由可得,將,代入上式,可得,所以曲線的直角坐標(biāo)方程為.(2)由(1)得,的普通方程為,將其化為極坐標(biāo)方程可得,當(dāng)時(shí),,,所以.20、(1)見(jiàn)解析,(2)(i)見(jiàn)解析(ii)時(shí)平均檢驗(yàn)次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進(jìn)而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時(shí),該方案最合理,對(duì)進(jìn)行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因?yàn)椋栽谏蠁握{(diào)遞增,故越小,越小,即所需平均檢驗(yàn)次數(shù)越少,該方案越合理記當(dāng)且取最小值時(shí),該方案最合理,因?yàn)椋?,所以時(shí)平均檢驗(yàn)次數(shù)最少,約為次.【點(diǎn)睛】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望,考查了分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.21、(1),;(2)或【解析】

(1)將曲線的極坐標(biāo)方程和直線的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程,即可求得曲線與的交點(diǎn)坐標(biāo);(2)由直線的普通方程為,故上任意一點(diǎn),根據(jù)點(diǎn)到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標(biāo)方程為.當(dāng)時(shí),直線的普通

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論