




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
3
Introduction
to
Linear
ProgrammingIntroduction3
Introduction
to
Linear
Programming?allocating
limited
resourcesbest
possible
wayin
a?the
simplex
method3
Introduction
to
Linear
Programming3.1
Prototype
exampleThe
Background
:??Product1:
an
8-foot
glass
door
with
aluminum
framingProduct2: A4*6
foot
double-hung
wood-famed
window3
Introduction
to
Linear
ProgrammingplantProduction
time
per
batch,hoursProductiontime
availableper
week,hoursproduct1212310302241218$3,000$5,000Question:ize
their
total
profit
?3.1 Prototype
exampleplantProduction
time
per
batch,
hoursProduction
timeavailable
per
week,hoursproduct
1product
2412Profit
per
batch$3,000$5,000max
z
3x1
5x20x1
2x2
12x1
0x2
43x1
2x2
183.1 Prototype
exampleplantProduction
time
per
batch,
hoursProduction
timeavailable
per
week,hoursproduct
1product
2412Profit
per
batch$3,000$5,0001
2x1,
x2
03x1
2x20x
2x1x1
0x2
4
12
18s.t.max
z
3x1
5x2This
is
a
linearprogramming江西財經3.1 Prototype
exampleRegional
PlanningKibbutzUsable
Land
(Acres)Water
Allocation
(Acre
Feet)1400600260080033003753.1 Prototype
examplecropumquota
(acres)Waterconsumption(acre
feet/acre)Net
return($/acre)Sugar
beets60031,000Cotton5002750s
hum32512503.1 Prototype
exampleThe
question
is:How
many
acres
to
devote
to
each
crop
at
the
respectivekibbutzim
while
satisfying
the
given
restrictions.
The
objective
isto ize
the
total
net
return
to
the
southern
Confederation
ofKibbutzim
as
a
whole.3.1 Prototype
examplegyg
yResearch3.1 Prototype
example運籌學OperationsSo,
the
decision
variables
areCropAllocation
usable
land
to
Kibbutz123Sugarx11x12x13Cottonx21x22x23x31x32x33Shumcropumquota
(acres)Water
consumption(acre
feet/acre)Net
return($/acre)Sugar
beetsCottonS
hum6005003253211,000750250objectiveMaxZ
1000(x11
x12
x13
)
750(x21
x22
x23
)
250(x31
x32
x33
)13
32
3322
3212x
x
x
600
x
x
300xx11
x21
x31
40013
23
333x
2x
x
3753x12
2x22
x32
8003x11
2x21
x31
6003.1 Prototype
example
31323322
2321xx
xx
x
500
325xx11
x12
x13
600300
x13
x23
x33400
x
x
22
x
32600
x11
x21
x31
x12
x22
x32600
x
x
x
x11
x21
x31400x
j
0,
for j
1,2,,9
3.1 Prototype
exampleDecision
variables,
Objective
function,
ConstraintsDetermine
decision
variablesDetermine
the
objective
functionDetermine
the
constraints3.1 Prototype
exampleLP11
1
12
21n
n1am1x1
am2
x221
1x22
2subject
to1
2
x
0,
x
0
,
,xn
0,
amnx
bn
ma2n
xn
b2
aa
x
ba3.2 The
Linear
Programming
ModelThe
standard
formize Z
c1x1
c2
x2
a
xcnxna
x
objective
functionfunctionalconstraintsnonnegativeconstraints3
Introduction
to
Linear
ProgrammingResourceResource
usage
per
unit
of
activityAmount
of
resourceavailableActivity12….n1a11a12a1
nb12a
21a
22a
2
nb2ma
m
1a
m
2a
mnbmContribution
to
Zper
unit
activityc1c
2c
n3.2 The
Linear
Programming
ModelOther
Formslegitimate
formsZ=c1x1+c2x2+…+cnxnai1x1+ai2x2+…+ainxn≥biai1x1+ai2x2+…+ainxn=bixj
unrested
in
signfor
some
values
of
j.3.2 The
Linear
Programming
ModelCertainty
symbols
are
commonly
used
to
denote
the
variouscomponents
of
a
linear
programming
model.These
symbols
arelisted
below:Zxjcjdecision
variablesbiparametersaij3.2 The
Linear
Programming
Model3.3
Solving Linear
Programming
by
using
EXCEL3
Introduction
to
Linear
Programmingm3.3
Solving Linear
Programming
by
using
EXCELmaxz
3x1
51x1
0x2
x24Wyndlass
Co.
Product-Mix
Proble0x1
2x2
12s.t.3x1
2x2
18x1,x2
0DoorsWindowsUnit
Profit$300$500HoursHours
Used
Per
Unit
ProducedAvailablePlant
1104Plant
20212Plant
33218DoorsWindowsUnits
Produced00DoorsW
indowsUnit
Profit$300$500HoursHours
Us
ed
Per
Unit
P
roducedAvailableP
lant
1104P
lant
202123218P
lant
3DoorsW
indowsTotal
P
rofitUnits
Produc
ed11$800G11Total
Profit12=SUMPRODUCT(UnitProfit,UnitsProduced)3.3
Solving Linear
Programming
by
using
EXCELDoorsW
indowsUnit
P
rofit$300
$500HoursHoursHours
Us
ed
P
er
Unit
P
roduc
edUsedA
vailableP
lant
11
01<=4P
lant
20
22<=12P
lant
33
25<=18DoorsW
indowsTotal
P
rofitUnits
P
roduced1
1$800E5Hours6Used7=SUMPRODUCT(C7:D7,UnitsProduced)8=SUMPRODUCT(C8:D8,UnitsProduced)9=SUMPRODUCT(C9:D9,UnitsProduced)3.3
Solving Linear
Programming
by
using
EXCEL3.3
Solving Linear
Programming
by
using
EXCEL24運籌學Operations
Research(7)
Answer
the
parameters
of
SolverBCDEFG3DoorsWindows4Unit
Profit$300
$5005HoursHours6Hours
Used
Per
Unit
ProducedUsedAvailable7Plant
11
00
23
21<=112188Plant
22<=9Plant
35<=1011DoorsWindowsTotal
Profit12Units
Produced1
1$8003.3
Solving Linear
Programming
by
using
EXCELSchool
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?2006BCDEFG3DoorsWindows4Unit
Profit$300$5005HoursHours6Hours
Used
Per
Unit
ProducedUsedAvailable7Plant
1101<=102128Plant
22<=9Plant
3325<=181011DoorsWindowsTotal
Profit12Units
Produced11$800of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?20063.3
Solving Linear
Programming
by
using
EXCEL3.3
Solving Linear
Programming
by
using
EXCELDoorsW
indowsUnit
P
rofit$300
$500HoursHoursHours
Us
ed
P
er
Unit
Produc
edUsedA
vailableP
lant
11
02<=1P
lant
20
212<=12P
lant
33
218<=18DoorsW
indowsTotal
P
rofitUnit
s
P
roduced2
6$3,6003.3
Solving Linear
Programming
by
using
EXCELThe
optimal
solution
is:Regional
Planningwater
consumptionAllocation
land
to
KibbtzCrop(Acre
Feet/Acre)123Sugar
beets321133.33100.0025.00258.3333<=600500325Cotton100.00250.00150.00500<=S
hum0<=233.33350.00175.00<=<=<=Usable
Land
(Acres)400.00
600.00
300.00um
Profit633333.33600.00800.00375.00<=<=<=Water
allocation(Acre
Feet)600.00
800.00
375.00Equal
Proportion
of
land
PlantedPlant
of
Rate
of
Kibbutz
1Plant
of
Rate
of
Kibbutz
2Plant
of
Rate
of
Kibbutz
30.58=0.58=0.583.3
Solving Linear
Programming
by
using
EXCEL3.4 Solving
LP
by
Graphic
Method3
Introduction
to
Linear
Programming12x1,
x2
00x
2x.
1
2s.t
x
2xmax
z
3x1
5x21x1
0x2
4
123
18The
optimal
solutionx1=2,
x2=6Z=3600echFeasibleRegionThe
steps
of
Graphic
Method:3.4 Solving
LP
by
Graphic
Method3.4 Solving
LP
by
Graphic
MethodExercise:
To
solving
the
following
LP,
0x
x1
2s.t.3
x1
2x2
262
x1
3
x2
24max
z
4
x1
3
x21(8)()The
optimal
solutionx1=6,x2=4Z=363.4 Solving
LP
by
Graphic
MethodSome
other
possible
situations
:(1)
No
Optimal
Solutions.3.4 Solving
LP
by
Graphic
MethodTerminology
for
Solution
of
the
Modelfeasible
solutioninfeasiblesolution?feasibleregionno
feasiblesolutions.An
optimal
solution3.4 Solving
LP
by
Graphic
MethodFeasibleRegionRelationship
between
optimalsolutions
and
CPF
solutions:corner-point
feasible(CPF)solution3.4 Solving
LP
by
Graphic
Method3.5
Assumptions
of
Linear
Programming(1)ProportionalityProportionalityProportionalityassumption:valueis
proportional
to
theof
the
objective
functionlevel
of
the
activity
xj,left-hand
side
of
each
functional
constraint
isproportional
to
the
level
of
the
activity
xj,23x1
2x2
18x1,
x2
02x
12x1
4s.t.max
Z
3x1
2x23
Introduction
to
Linear
Programming運籌學Operations
Research035660371291201234Proportionality
violatedCase
1 Case
2 Case
3ProportionalitysatisfiedTo
illustrate
this
assumption,
consider
the
Wynd
lassCo.
problem.Profit
from
product
1
($000
per
week)x13.5
Assumptions
of
Linear
Programming江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?200637Set-up
cSocsoto3.5
Assumptions
of
Linear
ProgrammingCase
1SatisfiesViolatesViolatesCase
1Case
23.5
Assumptions
of
Linear
ProgrammingCase
2:slope
of
the
profit
functionthe3.5
Assumptions
of
Linear
ProgrammingViolatesCase
3:slope
of
the
profit
functionSatisfies3.5
Assumptions
of
Linear
Programming(x1,x2)Value
of
ZAdditivity
satisfiedAdditivity
violatedCase
1Case
2(1,0)(0,1)353535(1,1)8973.5
Assumptions
of
Linear
ProgrammingAdditive
Assumption:the
sum
of
theindividual
contributionsCase
1:if
the
two
products
werecomplementary
in
some
way
that
increases
profit3.5
Assumptions
of
Linear
ProgrammingCase2:arise
if
the
two
products
werecompetitive
in
some
wayback
andforth3.5
Assumptions
of
Linear
Programming運籌學Operations
ResearchCase
3:
the
production
time
used
by
the
two
products
is
givenby
the
function
3x1+2x2+0.5x1x2,which
violates
the
additiveassumption.(x1,x2)Amount
of
resource
usedAdditivity
satisfiedAdditivity
violatedCase
3Case
4(2,0)(0,3)666666(2,3)121510.83.5
Assumptions
of
Linear
Programming江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?200645運籌學Operations
ResearchCase
4:
the
function
for
production
time
used
is
3x1+2x2-0.5x1
x2, so
violates
the
additive
assumption.2(x1,x2)Amount
of
resource
usedAdditivity
satisfiedAdditivity
violatedCase
3Case
4(2,0)(0,3)666666(2,3)121510.83.5
Assumptions
of
Linear
Programming江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?200646Divisibility
assumptionfractional
levelsinteger
values3.5
Assumptions
of
Linear
ProgrammingCertainty
assumptions:known
constant3.5
Assumptions
of
Linear
Programming3.6
Additional
Examples3
Introduction
to
Linear
ProgrammingDesign
of
Radiation
TherapyRadiationtherapy3.6
Additional
Examples1332Beam13.6
Additional
ExamplesTable
3.7Data
for
the
Design
of
Mary’sRadiation
TherapyFraction
of
Entry
Dose
AbsorbedRestriction
on
TotalAverage
Dosage,Kiloradsby
Area
(Average)AreaBeam1Beam2Healthy
anatomy0.40.5MinimizeCritical
tissues0.30.1<=2.7Tumor
region0.50.5=6Center
of
tumor0.60.4>=6select
the
combination
ofbeams
to
be
used,
and
the
intensity
of
each
one,
togenerate
the
best
possible
dose
distribution.3.6
Additional
Exampless.t
0.5x1
0.5x
2
6.0.6x1
0.4x2
6x1,
x2
63.6
Additional
ExamplesFORMULATION
:Minimize Z
0.4x1
0.5x20.3x1
0.1x2
2.7Controlling
Air
Pollution3.6
Additional
Examples運籌學Operations
Research江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?200655The
three
main
types
of
pollutants
in
this
airsideare
particulate
matter,
sulfur
oxides,
andhydrocarbons.
The
new
standards
require
that
thecompany
reduce
its
annual
emission
of
thesepollutants
bytheamounts
shown
inTable3.12.PollutionRequired
reduction
in
annual
emission
rate(million
pounds)Particulates60Sulfur
oxides150Hydrocarbons1253.6
Additional
ExamplesIncreasing
the
height
of
the
smokestacks;Using
filter
devices
(including
gas
traps)
in
the
smokestacks;(3)Including
cleaner,
high-grade
materials
among
the
fuels
forthe
furnaces.3.6
Additional
ExamplesPollutantTaller
SmokestacksFiltersBetter
fuelsBlastfurnacesOpen-hearthfurnacesBlastfurnacesOpen-hearthfurnacesBlastfurnacesOpen-hearthfurnacesParticulates12925201713Sulfur
oxides354218315649hydrocarbons3753282429203.6
Additional
Examples運籌學Operations
Research江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?200658A
method’s
annual
cost
includes
increased
operating
andmaintenance
expense
as
well
as
reduced
revenue
due
to
anyloss
in
the
efficiency
of
the
production
process
caused
by
usingthe
method.The
other
major
cost
is
the
start-up
cost
required
to
installthe
method.The
total
annual
cost
estimates
(in
million
of
dollars)
aregiven
in
Table
3.14
for
using
the
methods
at
their
fullabatement
capacities.Abatement
methodBlast
furnacesOpen-hearth
furnacesTaller
smokestacks810Filters76Better
fules1193.6
Additional
ExamplesQuestion:3.6
Additional
ExamplesFORMULATION:3.6
Additional
ExamplesReclaiming
Solid
Wastes3.6
Additional
Examples運籌學Operations
ResearchProductDataforSave-it
Co.GradeSpecificationAmalgamationCost
perpound($)Selling
price
perpound
($)ABCMaterial
1:Not
more
than
30%
of
totalMaterial
2:Not
less
than
40%
of
totalMaterial
3:Not
more
than
50%
of
totalMaterial4:Exactly
20%oftotalMaterial
1:Not
more
than
50%
of
totalMaterial
2:Not
less
than
10%
of
totalMaterial4:Exactly
10%oftotal3.002.508.507.00Material
1:not
more
than
70%
of
total2.005.50江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?2006623.6
Additional
Examples運籌學Operations
Researchfor
ea aterial,
at
leasthalf
of
the
pounds
perweekavailable
should
be
collectedand
treated
.$30,000
per
week
shouldbe
used
to
treat
thesematerials.30060040050030002000400010001234The
reclamationcenter
collects
its
solid
waste
materials
fromregular
sources
and
so
is
normally
able
to
maintain
a
steady
ratefor
treating
them.Solid
waste
material
data
for
the
save-it
Co.Material Pounds
perweek
availableTreatment
cost
Additional
restrictionsper
pound($)江西財經大學信息管理學院?2006School
of
Information
Technology,
JiangXi
University
of
Finance
&
Economics?2006633.6
Additional
Examplesat
least
half
of
the
amountQuestion:3.6
Additional
ExamplesLet
xij
=
Pounds
of
material
j
allocated
to
product
i
per
week
(i
=
A,
B,
C;
j
=
1,
2,
3,4).ize
Profit
=
5.5(xA1
+
xA2
+
xA3
+
xA4)
+
4.5(xB1
+
xB2
+
xB3
+
xB4)
+
3.5(xC1
+
xC2+
xC3
+
xC4)subject
to MixtureSpecifications:Availability
of
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 真石漆的施工方案
- 管道陰極保護施工方案
- 二零二五年度梁上打孔作業(yè)風險控制免責合同
- 二零二五年度金融服務合同價款調整與信用風險防范
- 二零二五年度武漢房屋租賃合同糾紛處理辦法
- 二零二五年度足療店連鎖經營授權管理合同
- 二零二五年度能源消耗監(jiān)控系統(tǒng)維保及節(jié)能服務合同
- 二零二五年度羊群代放牧與綠色食品生產協(xié)議
- 二零二五年度二零二五年度承重墻拆除工程安全生產責任承諾書
- 普通高等學校就業(yè)協(xié)議書(2025年度)-金融服務業(yè)人才輸送協(xié)議
- 領導干部的國學修養(yǎng)講義
- 輔酶Q10-心臟安全衛(wèi)士課件
- 人文素養(yǎng)知識考試復習題庫(含答案)
- 申根簽證在職證明模板中英雙語備課講稿
- 外科學教學課件:腰椎間盤突出癥
- 兒童吸入性肺炎的診斷與治療
- 產房分娩安全核查表及使用說明
- 建筑QC小組成果報告建筑QC小組成果報告八篇
- oppor11t刷全網通改全教程
- 內部控制-倉儲與存貨循環(huán)調查問卷
- 高二英語期末考試試卷質量分析報告
評論
0/150
提交評論