




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.2.已知,,則的大小關(guān)系為()A. B. C. D.3.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.4.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②5.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.6.已知全集為,集合,則()A. B. C. D.7.橢圓是日常生活中常見(jiàn)的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過(guò)程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.8.在中,點(diǎn)為中點(diǎn),過(guò)點(diǎn)的直線與,所在直線分別交于點(diǎn),,若,,則的最小值為()A. B.2 C.3 D.9.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.10.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.11.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.14.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),(其中是自然對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)的值為_(kāi)____.15.已知函數(shù),若,則的取值范圍是__16.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護(hù)士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護(hù)士,其中甲乙兩名護(hù)士不到同一地,共有__________種選派方法.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會(huì)增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來(lái)5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:18.(12分)已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,且.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線與橢圓相交于、兩點(diǎn),與圓相交于、兩點(diǎn),求的取值范圍.19.(12分)設(shè)橢圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由.20.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足:(1)求數(shù)列的通項(xiàng)公式;(2)令,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:對(duì)于任意的n∈N*,都有Tn<.22.(10分)如圖1,在邊長(zhǎng)為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.2.D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對(duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.3.B【解析】
選B.考點(diǎn):圓心坐標(biāo)4.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過(guò)特殊值法進(jìn)行排除,屬于簡(jiǎn)單題目.5.C【解析】
根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)?,所以的最小值?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.6.D【解析】
對(duì)于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對(duì)于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.7.C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.8.B【解析】
由,,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)?,,所以.因?yàn)?,,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1.故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9.A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.10.B【解析】
由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個(gè)頂點(diǎn)坐標(biāo)的平均數(shù).11.B【解析】
考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.12.C【解析】
根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,注意函數(shù)奇偶性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.14.【解析】
先推導(dǎo)出函數(shù)的周期為,可得出,代值計(jì)算,即可求出實(shí)數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對(duì)稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的對(duì)稱性計(jì)算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對(duì)稱軸推導(dǎo)出函數(shù)的周期,考查推理能力與計(jì)算能力,屬于中等題.15.【解析】
根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,所以,故的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對(duì)數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.16.24【解析】
先求出每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù),再減去甲乙兩名護(hù)士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù)有,若甲乙兩名護(hù)士到同一地的種數(shù)有,則甲乙兩名護(hù)士不到同一地的種數(shù)有.故答案為:.【點(diǎn)睛】本題考查利用間接法求排列組合問(wèn)題,正難則反,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),232;(2)【解析】
(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當(dāng)時(shí),.所以可預(yù)測(cè)日平均氣溫為時(shí)該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個(gè)基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個(gè)基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點(diǎn)睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.18.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理結(jié)合條件求得和,利用橢圓的定義求得的值,進(jìn)而可得出,則橢圓的標(biāo)準(zhǔn)方程可求;(Ⅱ)設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,利用韋達(dá)定理與弦長(zhǎng)公式求出,利用幾何法求得直線截圓所得弦長(zhǎng),可得出關(guān)于的函數(shù)表達(dá)式,利用不等式的性質(zhì)可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)點(diǎn)、,聯(lián)立消去,得,,則,,設(shè)圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中弦長(zhǎng)之積的取值范圍的求解,涉及韋達(dá)定理與弦長(zhǎng)公式的應(yīng)用,考查計(jì)算能力,屬于中等題.19.(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時(shí)圓的切線都滿足或,而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往要利用韋達(dá)定理.存在性問(wèn)題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性.20.(1)證明見(jiàn)解析,;(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年清遠(yuǎn)市陽(yáng)山縣公安局招聘警務(wù)輔助人員筆試真題
- 機(jī)電工程研究能力評(píng)估試題及答案
- 西方政治中參與式治理的現(xiàn)狀與展望試題及答案
- 西方政治制度中的政策評(píng)估機(jī)制試題及答案
- 機(jī)電工程電路設(shè)計(jì)測(cè)評(píng)及試題及答案
- 2025年文化產(chǎn)業(yè)園發(fā)展現(xiàn)狀與產(chǎn)業(yè)集聚效應(yīng)深度分析報(bào)告
- 控制理論與應(yīng)用試題及答案
- 教育與培訓(xùn)行業(yè)市場(chǎng)細(xì)分報(bào)告:2025年教育咨詢與職業(yè)規(guī)劃行業(yè)發(fā)展前景
- 機(jī)電工程市場(chǎng)活動(dòng)試題及答案
- 項(xiàng)目成果的知識(shí)管理與傳承試題及答案
- 2025年生態(tài)環(huán)境保護(hù)知識(shí)測(cè)試題及答案
- 道路監(jiān)控系統(tǒng)培訓(xùn)課件
- 2025年湖北省新高考信息卷(三)物理試題及答題
- 2025-2030年力控玩具項(xiàng)目投資價(jià)值分析報(bào)告
- 基于學(xué)校區(qū)域文化優(yōu)勢(shì)背景下的小學(xué)水墨畫(huà)教學(xué)研究
- 設(shè)備欠款協(xié)議書(shū)范本
- 機(jī)柜租賃合同協(xié)議
- 活動(dòng)策劃服務(wù)投標(biāo)方案(技術(shù)方案)
- 鏈輪齒數(shù)尺寸對(duì)照表二
- 國(guó)有資產(chǎn)管理情況整改報(bào)告
- 110kV輸電線路工程冬季施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論