2023屆湖南名師聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2023屆湖南名師聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2023屆湖南名師聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2023屆湖南名師聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2023屆湖南名師聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則a的取值范圍為()A. B. C. D.2.已知命題:是“直線和直線互相垂直”的充要條件;命題:對(duì)任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.3.在三角形中,,,求()A. B. C. D.4.“角谷猜想”的內(nèi)容是:對(duì)于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.95.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.6.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4007.函數(shù)的部分圖像如圖所示,若,點(diǎn)的坐標(biāo)為,若將函數(shù)向右平移個(gè)單位后函數(shù)圖像關(guān)于軸對(duì)稱,則的最小值為()A. B. C. D.8.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.9.中,,為的中點(diǎn),,,則()A. B. C. D.210.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或11.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.212.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_________.14.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.15.已知集合,,則__________.16.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)對(duì)于給定的正整數(shù)k,若各項(xiàng)均不為0的數(shù)列滿足:對(duì)任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請(qǐng)說明理由.19.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:20.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.21.(12分)第十三屆全國人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實(shí)數(shù)的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.2、A【解析】

先分別判斷每一個(gè)命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時(shí),直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當(dāng)直線和直線互相垂直時(shí),,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當(dāng)時(shí),沒有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3、A【解析】

利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.4、B【解析】

模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.5、D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.6、B【解析】

設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.7、B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對(duì)稱,求得的最小值.【詳解】由于,函數(shù)最高點(diǎn)與最低點(diǎn)的高度差為,所以函數(shù)的半個(gè)周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個(gè)單位后函數(shù)圖像關(guān)于軸對(duì)稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點(diǎn)睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡(jiǎn)單題目.8、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.9、D【解析】

在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.10、B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.11、B【解析】

先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.12、A【解析】

由直線x-3y+3=0過橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】14、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對(duì)幾何體的正確認(rèn)識(shí),能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題15、【解析】

解一元二次不等式化簡(jiǎn)集合,再進(jìn)行集合的交運(yùn)算,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查一元二次不等式的求解、集合的交運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】

根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【點(diǎn)睛】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級(jí)結(jié)論,此題可以簡(jiǎn)化計(jì)算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對(duì)于任意都成立,則成等比數(shù)列,設(shè)公比為,驗(yàn)證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對(duì)于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時(shí),由()可得:時(shí),由()可得:,可得,同理可證成等比數(shù)列,數(shù)列是等比數(shù)列【點(diǎn)睛】本題是一道數(shù)列的新定義題目,考查了等比數(shù)列的性質(zhì)、通項(xiàng)公式等基本知識(shí),考查代數(shù)推理、轉(zhuǎn)化與化歸以及綜合運(yùn)用數(shù)學(xué)知識(shí)探究與解決問題的能力,屬于難題.18、(1),(2)存在,【解析】

(1)先求得曲線的普通方程,利用伸縮變換的知識(shí)求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計(jì)算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點(diǎn),,則,且點(diǎn)到直線的距離,∴,∴.【點(diǎn)睛】本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.19、(I)詳見解析;(II)2【解析】

(I)求導(dǎo)得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當(dāng)a≤0時(shí),f'(x)=e當(dāng)a>0時(shí),f'(x)=ex-a=0,x=lna當(dāng)x∈lna,+∞時(shí),綜上所述:a≤0時(shí),fx在R上單調(diào)遞增;a>0時(shí),fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當(dāng)x∈0,+∞上時(shí),x2+1f'x在x∈0,+∞上單調(diào)遞增,故fx在0,12上單調(diào)遞減,在1綜上所述:a+5b的最大值為【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,函數(shù)的最值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1);(2)【解析】

(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因?yàn)?,所以,即,即,所?(2)∵/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論