版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
StatisticsforBusiness
andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness
andEcChapter12
TestsofGoodnessofFitandIndependence
GoodnessofFitTest:AMultinomialPopulationGoodnessofFitTest: PoissonandNormalDistributionsTestofIndependenceChapter12
TestsofGoodnessHypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation1.Statethenullandalternativehypotheses.H0:ThepopulationfollowsamultinomialdistributionwithspecifiedprobabilitiesforeachofthekcategoriesHa:ThepopulationdoesnotfollowamultinomialdistributionwithspecifiedprobabilitiesforeachofthekcategoriesHypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation2.Selectarandomsampleandrecordtheobservedfrequency,fi,foreachofthekcategories.3.AssumingH0istrue,computetheexpectedfrequency,ei,ineachcategorybymultiplyingthecategoryprobabilitybythesamplesize.Hypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation4.Computethevalueoftheteststatistic.Note:Theteststatistichasachi-squaredistributionwithk–1dfprovidedthattheexpectedfrequenciesare5ormoreforallcategories.fi=observedfrequencyforcategoryiei=expectedfrequencyforcategoryik=numberofcategorieswhere:Hypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulationwhereisthesignificancelevelandtherearek-1degreesoffreedomp-valueapproach:Criticalvalueapproach:RejectH0ifp-value<
a5.Rejectionrule:RejectH0ifHypothesis(GoodnessofFit)TMultinomialDistributionGoodnessofFitTestExample:FingerLakesHomes(A)FingerLakesHomesmanufacturesfourmodelsofprefabricatedhomes,atwo-storycolonial,alogcabin,asplit-level,andanA-frame.Tohelpinproductionplanning,managementwouldliketodetermineifpreviouscustomerpurchasesindicatethatthereisapreferenceinthestyleselected.MultinomialDistributionGoodnSplit-A-ModelColonialLogLevelFrame#Sold
30203515Thenumberofhomessoldofeachmodelfor100salesoverthepasttwoyearsisshownbelow.MultinomialDistributionGoodnessofFitTestExample:FingerLakesHomes(A)
HypothesesMultinomialDistributionGoodnessofFitTestwhere:pC=populationproportionthatpurchaseacolonialpL=populationproportionthatpurchasealogcabinpS=populationproportionthatpurchaseasplit-levelpA=populationproportionthatpurchaseanA-frameH0:pC=pL=pS=pA=.25Ha:Thepopulationproportionsarenot
pC=.25,pL=.25,pS=.25,andpA=.25HypothesesMultinomialDistribuRejectionRule27.815DoNotRejectH0RejectH0MultinomialDistributionGoodnessofFitTestWith=.05andk-1=4-1=3degreesoffreedom
RejectH0ifp-value<.05orc2>7.815.RejectionRule27.815DoNotExpectedFrequencies
TestStatisticMultinomialDistributionGoodnessofFitTeste1=.25(100)=25e2=.25(100)=25e3=.25(100)=25e4=.25(100)=25=1+1+4+4=10ExpectedFrequenciesMultinomiaMultinomialDistributionGoodnessofFitTestConclusionUsingthep-ValueApproachThep-value<
a.Wecanrejectthenullhypothesis.Becausec2
=10isbetween9.348and11.345,theareaintheuppertailofthedistributionisbetween.025and.01.AreainUpperTail.10.05.025.01.005c2Value(df=3)6.2517.8159.34811.34512.838Actualp-valueis.0186MultinomialDistributionGoodnConclusionUsingtheCriticalValueApproachMultinomialDistributionGoodnessofFitTestWereject,atthe.05levelofsignificance,theassumptionthatthereisnohomestylepreference.c2=10>7.815ConclusionUsingtheCriticalTestofIndependence:ContingencyTables1.Setupthenullandalternativehypotheses.2.Selectarandomsampleandrecordtheobservedfrequency,fij,foreachcellofthecontingencytable.3.Computetheexpectedfrequency,eij,foreachcell.H0:ThecolumnvariableisindependentoftherowvariableHa:ThecolumnvariableisnotindependentoftherowvariableTestofIndependence:ContingTestofIndependence:ContingencyTables5.Determinetherejectionrule.RejectH0ifp-value<
aor.4.Computetheteststatistic.whereisthesignificanceleveland,withnrowsandmcolumns,thereare(n-1)(m-1)degreesoffreedom.TestofIndependence:ContingEachhomesoldbyFingerLakesHomescanbeclassifiedaccordingtopriceandtostyle.FingerLakes’managerwouldliketodetermineifthepriceofthehomeandthestyleofthehomeareindependentvariables.ContingencyTable(Independence)TestExample:FingerLakesHomes(B)EachhomesoldbyFingerPriceColonialLogSplit-LevelA-FrameThenumberofhomessoldforeachmodelandpriceforthepasttwoyearsisshownbelow.Forconvenience,thepriceofthehomeislistedaseither$99,000orlessormorethan$99,000.>$99,0001214 163<$99,00018 61912ContingencyTable(Independence)TestExample:FingerLakesHomes(B)PriceColonialLHypothesesContingencyTable(Independence)TestH0:PriceofthehomeisindependentofthestyleofthehomethatispurchasedHa:PriceofthehomeisnotindependentofthestyleofthehomethatispurchasedHypothesesContingencyTable(IExpectedFrequenciesContingencyTable(Independence)TestPrice
ColonialLogSplit-LevelA-FrameTotal<$99K>$99KTotal3020351510012 1416345186191255ExpectedFrequenciesContingencRejectionRuleContingencyTable(Independence)TestWith=.05and(2-1)(4-1)=3d.f.,RejectH0ifp-value<.05or2
>7.815=.1364+2.2727+...+2.0833=9.149TestStatisticRejectionRuleContingencyTablConclusionUsingthep-ValueApproachThep-value<
a.Wecanrejectthenullhypothesis.Becausec2
=9.145isbetween7.815and9.348,theareaintheuppertailofthedistributionisbetween.05and.025.AreainUpperTail.10.05.025.01.005c2Value(df=3)6.2517.8159.34811.34512.838ContingencyTable(Independence)TestActualp-valueis.0274ConclusionUsingthep-ValueAConclusionUsingtheCriticalValueApproachContingencyTable(Independence)TestWereject,atthe.05levelofsignificance,theassumptionthatthepriceofthehomeisindependentofthestyleofhomethatispurchased.c2=9.145>7.815ConclusionUsingtheCriticalGoodnessofFitTest:PoissonDistribution1.Statethenullandalternativehypotheses.2.Selectarandomsampleand
a.RecordtheobservedfrequencyfiforeachvalueofthePoissonrandomvariable.
b.Computethemeannumberofoccurrences.H0:ThepopulationhasaPoissondistributionHa:ThepopulationdoesnothaveaPoissondistributionGoodnessofFitTest:PoissonGoodnessofFitTest:PoissonDistribution3.Computetheexpectedfrequencyofoccurrencesei
foreachvalueofthePoissonrandomvariable.MultiplythesamplesizebythePoissonprobabilityofoccurrenceforeachvalueofthePoissonrandom
variable.Iftherearefewerthanfiveexpectedoccurrences
forsomevalues,combineadjacentvaluesand
reducethenumberofcategoriesasnecessary.GoodnessofFitTest:PoissonGoodnessofFitTest:PoissonDistribution4.Computethevalueoftheteststatistic.fi=observedfrequencyforcategoryiei=expectedfrequencyforcategoryik=numberofcategorieswhere:GoodnessofFitTest:Poissonwhereisthesignificancelevelandtherearek-2degreesoffreedomp-valueapproach:Criticalvalueapproach:RejectH0ifp-value<
a5.Rejectionrule:RejectH0ifGoodnessofFitTest:PoissonDistributionwhereisthesignificancelExample:TroyParkingGarageInstudyingtheneedforanadditionalentrancetoacityparkinggarage,aconsultanthasrecommendedananalysisapproachthatisapplicableonlyinsituationswherethenumberofcarsenteringduringaspecifiedtimeperiodfollowsaPoissondistribution.GoodnessofFitTest:PoissonDistributionExample:TroyParkingGarage Arandomsampleof100one-minutetimeintervalsresultedinthecustomerarrivalslistedbelow.AstatisticaltestmustbeconductedtoseeiftheassumptionofaPoissondistributionisreasonable.GoodnessofFitTest:PoissonDistributionExample:TroyParkingGarage#Arrivals
0123456789101112Frequency014101420121298631 Arandomsampleof100one-mHypothesesHa:Numberofcarsenteringthegarageduringaone-minuteintervalisnotPoissondistributedH0:Numberofcarsenteringthegarageduringaone-minuteintervalisPoissondistributedGoodnessofFitTest:PoissonDistributionHypothesesHa:NumberofcarsEstimateofPoissonProbabilityFunctionotalArrivals=0(0)+1(1)+2(4)+...+12(1)=600Hence,Estimateof=600/100=6TotalTimePeriods=100GoodnessofFitTest:PoissonDistributionEstimateofPoissonProbabilit
ExpectedFrequenciesx
f(x)nf(x)012345613.7710.336.81100.00.1377.1033.0688.0413.0225.02011.0000789101112+Total.0025.0149.0446.0892.1339.1606.1606.251.494.468.9213.3916.0616.06x
f(x) nf(x)GoodnessofFitTest:PoissonDistribution ExpectedFrequenciesxf
ObservedandExpectedFrequencies
i
fi
ei
fi-ei-1.201.080.613.94-4.06-1.77-1.331.121.616.208.9213.3916.0616.0613.7710.336.888.395101420121298100or1or2345678910ormoreGoodnessofFitTest:PoissonDistribution ObservedandExpectedFrequenTestStatisticWith=.05andk-p-1=9-1-1=7d.f.(wherek=numberofcategoriesandp=numberofpopulationparametersestimated),RejectH0ifp-value<.05or2
>14.067.RejectionRuleGoodnessofFitTest:PoissonDistributionTestStatisticWith=.0ConclusionUsingthep-ValueApproachThep-value>a.Wecannotrejectthenullhypothesis.ThereisnoreasontodoubttheassumptionofaPoissondistribution.Becausec2
=3.268isbetween2.833and12.017intheChi-SquareDistributionTable,theareaintheuppertailofthedistributionisbetween.90and.10.AreainUpperTail.90.10.05.025.01c2Value(df=7)2.83312.01714.06716.01318.475GoodnessofFitTest:PoissonDistributionActualp-valueis.8591ConclusionUsingthep-ValueAGoodnessofFitTest:NormalDistribution1.Statethenullandalternativehypotheses.Computetheexpectedfrequency,ei,foreachinterval.(Multiplythesamplesizebytheprobabilityofanormalrandomvariablebeingintheinterval.2.Selectarandomsampleand
a.Computethemeanandstandarddeviation.
b.Defineintervalsofvaluessothattheexpected frequencyisatleast5foreachinterval.
c.Foreachinterval,recordtheobservedfrequenciesH0:ThepopulationhasanormaldistributionHa:ThepopulationdoesnothaveanormaldistributionGoodnessofFitTest:Normal4.Computethevalueoftheteststatistic.GoodnessofFitTest:NormalDistribution5.RejectH0if (whereisthesignificancelevelandtherearek-3degreesoffreedom).4.ComputethevalueoftheExample:IQComputersIQComputers(onebetterthanHP?)manufacturesandsellsageneralpurposemicrocomputer.Aspartofastudytoevaluatesalespersonnel,managementwantstodetermine,ata.05significancelevel,iftheannualsalesvolume(numberofunitssoldbyasalesperson)followsanormalprobabilitydistribution.GoodnessofFitTest:NormalDistributionExample:IQComputersIQ Asimplerandomsampleof30ofthesalespeoplewastakenandtheirnumbersofunitssoldarelistedbelow.Example:IQComputers(mean=71,standarddeviation=18.54)33434445525256586364646566687072737374758384858691929498102105GoodnessofFitTest:NormalDistribution Asimplerandomsampleof30HypothesesHa:Thepopulationofnumberofunitssold doesnothaveanormaldistributionwith mean71andstandarddeviation18.54.H0:Thepopulationofnumberofunitssold hasanormaldistributionwithmean71 andstandarddeviation18.54.GoodnessofFitTest:NormalDistributionHypothesesHa:ThepopulationIntervalDefinitionTosatisfytherequirementofanexpectedfrequencyofatleast5ineachintervalwewilldividethenormaldistributioninto30/5=6equalprobabilityintervals.GoodnessofFitTest:NormalDistributionIntervalDefinitionTosatIntervalDefinitionAreas=1.00/6=.16677153.0271-.43(18.54)=63.0378.9788.98=71+.97(18.54)GoodnessofFitTest:NormalDistributionIntervalDefinitionAreas7153
ObservedandExpectedFrequencies1-210-115555553063654630Lessthan53.0253.02to63.0363.03to71.0071.00to78.9778.97to88.98Morethan88.98i
fi
ei
fi-eiTotalGoodnessofFitTest:NormalDistribution ObservedandExpectedFrequenTestStatisticWith=.05andk-p-1=6-2-1=3d.f.(wherek=numberofcategoriesandp=numberofpopulationparametersestimated),RejectH0ifp-value<.05or2
>7.815.RejectionRuleGoodnessofFitTest:NormalDistributionTestStatisticWith=.0ConclusionUsingthep-ValueApproachThep-value>a.Wecannotrejectthenullhypothesis.Thereislittleevidencetosupportrejectingtheassumptionthepopulationisnormallydistributedwith=71and=18.54.Becausec2
=1.600isbetween.584and6.251intheChi-SquareDistributionTable,theareaintheuppertailofthedistributionisbetween.90and.10.AreainUpperTail.90.10.05.025.01c2Value(df=3).5846.2517.8159.34811.345GoodnessofFitTest:NormalDistributionActualp-valueis.6594ConclusionUsingthep-ValueAEndofChapter12EndofChapter12StatisticsforBusiness
andEconomicsAndersonSweeneyWilliamsSlidesbyJohnLoucksSt.Edward’sUniversityStatisticsforBusiness
andEcChapter12
TestsofGoodnessofFitandIndependence
GoodnessofFitTest:AMultinomialPopulationGoodnessofFitTest: PoissonandNormalDistributionsTestofIndependenceChapter12
TestsofGoodnessHypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation1.Statethenullandalternativehypotheses.H0:ThepopulationfollowsamultinomialdistributionwithspecifiedprobabilitiesforeachofthekcategoriesHa:ThepopulationdoesnotfollowamultinomialdistributionwithspecifiedprobabilitiesforeachofthekcategoriesHypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation2.Selectarandomsampleandrecordtheobservedfrequency,fi,foreachofthekcategories.3.AssumingH0istrue,computetheexpectedfrequency,ei,ineachcategorybymultiplyingthecategoryprobabilitybythesamplesize.Hypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulation4.Computethevalueoftheteststatistic.Note:Theteststatistichasachi-squaredistributionwithk–1dfprovidedthattheexpectedfrequenciesare5ormoreforallcategories.fi=observedfrequencyforcategoryiei=expectedfrequencyforcategoryik=numberofcategorieswhere:Hypothesis(GoodnessofFit)THypothesis(GoodnessofFit)Test
forProportionsofaMultinomialPopulationwhereisthesignificancelevelandtherearek-1degreesoffreedomp-valueapproach:Criticalvalueapproach:RejectH0ifp-value<
a5.Rejectionrule:RejectH0ifHypothesis(GoodnessofFit)TMultinomialDistributionGoodnessofFitTestExample:FingerLakesHomes(A)FingerLakesHomesmanufacturesfourmodelsofprefabricatedhomes,atwo-storycolonial,alogcabin,asplit-level,andanA-frame.Tohelpinproductionplanning,managementwouldliketodetermineifpreviouscustomerpurchasesindicatethatthereisapreferenceinthestyleselected.MultinomialDistributionGoodnSplit-A-ModelColonialLogLevelFrame#Sold
30203515Thenumberofhomessoldofeachmodelfor100salesoverthepasttwoyearsisshownbelow.MultinomialDistributionGoodnessofFitTestExample:FingerLakesHomes(A)
HypothesesMultinomialDistributionGoodnessofFitTestwhere:pC=populationproportionthatpurchaseacolonialpL=populationproportionthatpurchasealogcabinpS=populationproportionthatpurchaseasplit-levelpA=populationproportionthatpurchaseanA-frameH0:pC=pL=pS=pA=.25Ha:Thepopulationproportionsarenot
pC=.25,pL=.25,pS=.25,andpA=.25HypothesesMultinomialDistribuRejectionRule27.815DoNotRejectH0RejectH0MultinomialDistributionGoodnessofFitTestWith=.05andk-1=4-1=3degreesoffreedom
RejectH0ifp-value<.05orc2>7.815.RejectionRule27.815DoNotExpectedFrequencies
TestStatisticMultinomialDistributionGoodnessofFitTeste1=.25(100)=25e2=.25(100)=25e3=.25(100)=25e4=.25(100)=25=1+1+4+4=10ExpectedFrequenciesMultinomiaMultinomialDistributionGoodnessofFitTestConclusionUsingthep-ValueApproachThep-value<
a.Wecanrejectthenullhypothesis.Becausec2
=10isbetween9.348and11.345,theareaintheuppertailofthedistributionisbetween.025and.01.AreainUpperTail.10.05.025.01.005c2Value(df=3)6.2517.8159.34811.34512.838Actualp-valueis.0186MultinomialDistributionGoodnConclusionUsingtheCriticalValueApproachMultinomialDistributionGoodnessofFitTestWereject,atthe.05levelofsignificance,theassumptionthatthereisnohomestylepreference.c2=10>7.815ConclusionUsingtheCriticalTestofIndependence:ContingencyTables1.Setupthenullandalternativehypotheses.2.Selectarandomsampleandrecordtheobservedfrequency,fij,foreachcellofthecontingencytable.3.Computetheexpectedfrequency,eij,foreachcell.H0:ThecolumnvariableisindependentoftherowvariableHa:ThecolumnvariableisnotindependentoftherowvariableTestofIndependence:ContingTestofIndependence:ContingencyTables5.Determinetherejectionrule.RejectH0ifp-value<
aor.4.Computetheteststatistic.whereisthesignificanceleveland,withnrowsandmcolumns,thereare(n-1)(m-1)degreesoffreedom.TestofIndependence:ContingEachhomesoldbyFingerLakesHomescanbeclassifiedaccordingtopriceandtostyle.FingerLakes’managerwouldliketodetermineifthepriceofthehomeandthestyleofthehomeareindependentvariables.ContingencyTable(Independence)TestExample:FingerLakesHomes(B)EachhomesoldbyFingerPriceColonialLogSplit-LevelA-FrameThenumberofhomessoldforeachmodelandpriceforthepasttwoyearsisshownbelow.Forconvenience,thepriceofthehomeislistedaseither$99,000orlessormorethan$99,000.>$99,0001214 163<$99,00018 61912ContingencyTable(Independence)TestExample:FingerLakesHomes(B)PriceColonialLHypothesesContingencyTable(Independence)TestH0:PriceofthehomeisindependentofthestyleofthehomethatispurchasedHa:PriceofthehomeisnotindependentofthestyleofthehomethatispurchasedHypothesesContingencyTable(IExpectedFrequenciesContingencyTable(Independence)TestPrice
ColonialLogSplit-LevelA-FrameTotal<$99K>$99KTotal3020351510012 1416345186191255ExpectedFrequenciesContingencRejectionRuleContingencyTable(Independence)TestWith=.05and(2-1)(4-1)=3d.f.,RejectH0ifp-value<.05or2
>7.815=.1364+2.2727+...+2.0833=9.149TestStatisticRejectionRuleContingencyTablConclusionUsingthep-ValueApproachThep-value<
a.Wecanrejectthenullhypothesis.Becausec2
=9.145isbetween7.815and9.348,theareaintheuppertailofthedistributionisbetween.05and.025.AreainUpperTail.10.05.025.01.005c2Value(df=3)6.2517.8159.34811.34512.838ContingencyTable(Independence)TestActualp-valueis.0274ConclusionUsingthep-ValueAConclusionUsingtheCriticalValueApproachContingencyTable(Independence)TestWereject,atthe.05levelofsignificance,theassumptionthatthepriceofthehomeisindependentofthestyleofhomethatispurchased.c2=9.145>7.815ConclusionUsingtheCriticalGoodnessofFitTest:PoissonDistribution1.Statethenullandalternativehypotheses.2.Selectarandomsampleand
a.RecordtheobservedfrequencyfiforeachvalueofthePoissonrandomvariable.
b.Computethemeannumberofoccurrences.H0:ThepopulationhasaPoissondistributionHa:ThepopulationdoesnothaveaPoissondistributionGoodnessofFitTest:PoissonGoodnessofFitTest:PoissonDistribution3.Computetheexpectedfrequencyofoccurrencesei
foreachvalueofthePoissonrandomvariable.MultiplythesamplesizebythePoissonprobabilityofoccurrenceforeachvalueofthePoissonrandom
variable.Iftherearefewerthanfiveexpectedoccurrences
forsomevalues,combineadjacentvaluesand
reducethenumberofcategoriesasnecessary.GoodnessofFitTest:PoissonGoodnessofFitTest:PoissonDistribution4.Computethevalueoftheteststatistic.fi=observedfrequencyforcategoryiei=expectedfrequencyforcategoryik=numberofcategorieswhere:GoodnessofFitTest:Poissonwhereisthesignificancelevelandtherearek-2degreesoffreedomp-valueapproach:Criticalvalueapproach:RejectH0ifp-value<
a5.Rejectionrule:RejectH0ifGoodnessofFitTest:PoissonDistributionwhereisthesignificancelExample:TroyParkingGarageInstudyingtheneedforanadditionalentrancetoacityparkinggarage,aconsultanthasrecommendedananalysisapproachthatisapplicableonlyinsituationswherethenumberofcarsenteringduringaspecifiedtimeperiodfollowsaPoissondistribution.GoodnessofFitTest:PoissonDistributionExample:TroyParkingGarage Arandomsampleof100one-minutetimeintervalsresultedinthecustomerarrivalslistedbelow.AstatisticaltestmustbeconductedtoseeiftheassumptionofaPoissondistributionisreasonable.GoodnessofFitTest:PoissonDistributionExample:TroyParkingGarage#Arrivals
0123456789101112Frequency014101420121298631 Arandomsampleof100one-mHypothesesHa:Numberofcarsenteringthegarageduringaone-minuteintervalisnotPoissondistributedH0:Numberofcarsenteringthegarageduringaone-minuteintervalisPoissondistributedGoodnessofFitTest:PoissonDistributionHypothesesHa:NumberofcarsEstimateofPoissonProbabilityFunctionotalArrivals=0(0)+1(1)+2(4)+...+12(1)=600Hence,Estimateof=600/100=6TotalTimePeriods=100GoodnessofFitTest:PoissonDistributionEstimateofPoissonProbabilit
ExpectedFrequenciesx
f(x)nf(x)012345613.7710.336.81100.00.1377.1033.0688.0413.0225.02011.0000789101112+Total.0025.0149.0446.0892.1339.1606.1606.251.494.468.9213.3916.0616.06x
f(x) nf(x)GoodnessofFitTest:PoissonDistribution ExpectedFrequenciesxf
ObservedandExpectedFrequencies
i
fi
ei
fi-ei-1.201.080.613.94-4.06-1.77-1.331.121.616.208.9213.3916.0616.0613.7710.336.888.39510142012129
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廠房租賃合同范本:新材料研發(fā)廠房租賃協(xié)議3篇
- 2025礦業(yè)公司訴國土廳探礦權(quán)出讓行政合同案
- 專家咨詢協(xié)議2024年版版B版
- 商業(yè)新聞在媒體融合中的創(chuàng)新傳播策略
- 山東建筑大學(xué)《電工與電子技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)數(shù)學(xué)與科學(xué)課程整合的教學(xué)案例分享
- 南京鐵道職業(yè)技術(shù)學(xué)院《中醫(yī)經(jīng)典》2023-2024學(xué)年第一學(xué)期期末試卷
- 綿陽職業(yè)技術(shù)學(xué)院《數(shù)字信號(hào)處理與通信》2023-2024學(xué)年第一學(xué)期期末試卷
- 教育人工智能在班級(jí)管理中的應(yīng)用探索
- 家園共育在孩子數(shù)學(xué)思維培養(yǎng)中的應(yīng)用
- 教育管理學(xué)課件-管理、教育管理和教育管理學(xué)之概述
- 2025年廣西事業(yè)單位聯(lián)考招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 酒店住宿投標(biāo)書
- 東方電影學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 某27層高層住宅樓施工組織設(shè)計(jì)方案
- 安徽省安慶市迎江區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 護(hù)理教學(xué)基本方法與技巧
- 名師工作室考核評(píng)價(jià)表.doc
- 長廊工程施工計(jì)劃方案
- 大地構(gòu)造分區(qū)重點(diǎn)講義
- 課程銜接理論的研究梳理與應(yīng)用前瞻
評(píng)論
0/150
提交評(píng)論