2023學(xué)年山東省膠州一中高三下第一次測試數(shù)學(xué)試題(含解析)_第1頁
2023學(xué)年山東省膠州一中高三下第一次測試數(shù)學(xué)試題(含解析)_第2頁
2023學(xué)年山東省膠州一中高三下第一次測試數(shù)學(xué)試題(含解析)_第3頁
2023學(xué)年山東省膠州一中高三下第一次測試數(shù)學(xué)試題(含解析)_第4頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則()A.1 B.2 C.3 D.42.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.63.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4006.已知且,函數(shù),若,則()A.2 B. C. D.7.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.8.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.9.設(shè)為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.10.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.11.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.176412.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則除以的余數(shù)是______.14.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.已知,,,的夾角為30°,,則_________.16.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當(dāng)時,.(1)求的值;(2)設(shè)線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.18.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.19.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.20.(12分)已知拋物線的焦點也是橢圓的一個焦點,與的公共弦的長為.(1)求的方程;(2)過點的直線與相交于、兩點,與相交于、兩點,且與同向,設(shè)在點處的切線與軸的交點為,證明:直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)為上的動點,、為長軸的兩個端點,過點作的平行線交橢圓于點,過點作的平行線交橢圓于點,請問的面積是否為定值,并說明理由.21.(12分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.22.(10分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說明你的理由.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】

結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【題目詳解】由題意可得,則.故選:C.【答案點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.2、B【答案解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【題目詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【答案點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.3、B【答案解析】

求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【題目詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【答案點睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計算問題,其中解答中合理應(yīng)用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.4、B【答案解析】

根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【題目詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【答案點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.5、B【答案解析】

設(shè)公差為,由已知可得,進而求出的通項公式,即可求解.【題目詳解】設(shè)公差為,,,,.故選:B.【答案點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎(chǔ)題.6、C【答案解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【題目詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【答案點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.7、B【答案解析】

求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【題目詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【答案點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.8、B【答案解析】

觀察已知條件,對進行化簡,運用累加法和裂項法求出結(jié)果.【題目詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【答案點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應(yīng)方法求解.9、C【答案解析】

設(shè),,,由可得,利用定義將用表示即可.【題目詳解】設(shè),,,由及,得,故,所以.故選:C.【答案點睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.10、A【答案解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【題目詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【答案點睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11、A【答案解析】

根據(jù)題目所給的步驟進行計算,由此求得的值.【題目詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【答案點睛】本小題主要考查合情推理,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.12、A【答案解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【題目詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【答案點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】

利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【題目詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【答案點睛】本題考查二項式定理的綜合應(yīng)用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項式,并將它展開分析,本題是一道基礎(chǔ)題.14、3【答案解析】

雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【題目詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【答案點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、1【答案解析】

由求出,代入,進行數(shù)量積的運算即得.【題目詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【答案點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.16、91【答案解析】

設(shè)共有選票張,且票對應(yīng)張數(shù)為,由此可構(gòu)造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【題目詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【答案點睛】本題考查線性規(guī)劃的實際應(yīng)用問題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【答案解析】

(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導(dǎo)數(shù)的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【題目詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【答案點睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達定理、弦長公式以及利用導(dǎo)數(shù)求切線方程,考查轉(zhuǎn)化思想和計算能力.18、(1);(2)點在定直線上.【答案解析】

(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運用導(dǎo)數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標表示,可得在定直線上;【題目詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點的切線的斜率為,所以切線的方程為.令,,即交軸于點坐標為,所以,,,.設(shè)點坐標為,則,所以點在定直線上.【答案點睛】本題考查拋物線的方程和性質(zhì),直線與圓的位置關(guān)系的判斷,考查直線方程和圓方程的運用,以及切線方程的求法,考查化簡整理的運算能力,屬于綜合題.19、(1)(2);【答案解析】

(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【題目詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【答案點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運算求解能力,是一道容易題.20、(1);(2)證明見解析;(3)是,理由見解析.【答案解析】

(1)根據(jù)兩個曲線的焦點相同,得到,再根據(jù)與的公共弦長為得出,可求出和的值,進而可得出曲線的方程;(2)設(shè)點,根據(jù)導(dǎo)數(shù)的幾何意義得到曲線在點處的切線方程,求出點的坐標,利用向量的數(shù)量積得出,則問題得以證明;(3)設(shè)直線,直線,、、,推導(dǎo)出以及,求出和,通過化簡計算可得出為定值,進而可得出結(jié)論.【題目詳解】(1)由知其焦點的坐標為,也是橢圓的一個焦點,,①又與的公共弦的長為,與都關(guān)于軸對稱,且的方程為,由此易知與的公共點的坐標為,,②聯(lián)立①②,得,,故的方程為;(2)如圖,,由得,在點處的切線方程為,即,令,得,即,,而,于是,因此是銳角,從而是鈍角.故直線繞點旋轉(zhuǎn)時,總是鈍角三角形;(3)設(shè)直線,直線,、、,則,設(shè)向量和的夾角為,則的面積為,由,可得,同理可得,故有.又,故,則,因此,的面積為定值.【答案點睛】本題考查了圓錐曲線的和直線的位置與關(guān)系,考查鈍角三角形的判定以及三角形面積為定值的求解,關(guān)鍵是聯(lián)立方程,構(gòu)造方程,利用韋達定理,以及向量的關(guān)系,得到關(guān)于斜率的方程,計算量大,屬于難題.21、/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論