2023屆青海師大二附中數(shù)學高三上期末復習檢測模擬試題含解析_第1頁
2023屆青海師大二附中數(shù)學高三上期末復習檢測模擬試題含解析_第2頁
2023屆青海師大二附中數(shù)學高三上期末復習檢測模擬試題含解析_第3頁
2023屆青海師大二附中數(shù)學高三上期末復習檢測模擬試題含解析_第4頁
2023屆青海師大二附中數(shù)學高三上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線x2a2A.y=±2x B.y=±3x2.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]3.已知滿足,則的取值范圍為()A. B. C. D.4.已知復數(shù)滿足,則的值為()A. B. C. D.25.已知,則()A. B. C. D.6.已知復數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.27.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.8.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.9.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.510.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.011.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.12.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則14.已知平面向量、的夾角為,且,則的最大值是_____.15.(5分)已知為實數(shù),向量,,且,則____________.16.從一箱產(chǎn)品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.18.(12分)某企業(yè)現(xiàn)有A.B兩套設備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設備抽取的樣本頻率分布直方圖,表1是從B設備抽取的樣本頻數(shù)分布表.圖1:A設備生產(chǎn)的樣本頻率分布直方圖表1:B設備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標值頻數(shù)2184814162(1)請估計A.B設備生產(chǎn)的產(chǎn)品質(zhì)量指標的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進行等級細分,質(zhì)量指標值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟效益的角度考慮企業(yè)應該對哪一套設備加大生產(chǎn)規(guī)模?19.(12分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.20.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.21.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.22.(10分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a22、B【解析】

作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.3、C【解析】

設,則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.4、C【解析】

由復數(shù)的除法運算整理已知求得復數(shù)z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數(shù)的除法運算與求復數(shù)的模,屬于基礎(chǔ)題.5、C【解析】

利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.6、B【解析】

化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復數(shù)類型求參數(shù),意在考查學生的計算能力.7、A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應用,側(cè)重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).8、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.9、A【解析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.10、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規(guī)劃,是基礎(chǔ)題.11、D【解析】

根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.12、D【解析】

設,由,得,利用復數(shù)相等建立方程組即可.【詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、-5【解析】

畫出x,y滿足的可行域,當目標函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可。【詳解】畫出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當目標函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。14、【解析】

建立平面直角坐標系,設,可得,進而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉(zhuǎn)化為角的三角函數(shù)的最值問題是解答的關(guān)鍵,考查計算能力,屬于難題.15、5【解析】

由,,且,得,解得,則,則.16、0.35【解析】

根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設點P(x0,),由x2=2py(p>0)得,y=,求導y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當且僅當時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點:求拋物線的方程,與拋物線有關(guān)的最值問題.18、(1)30.2,29;(2)B設備【解析】

(1)平均數(shù)的估計值為組中值與頻率乘積的和;(2)要注意指標值落在內(nèi)的產(chǎn)品才視為合格品,列出A、B設備利潤分布列,算出期望即可作出決策.【詳解】(1)A設備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標值頻數(shù)41640121810.根據(jù)樣本質(zhì)量指標平均值估計A設備生產(chǎn)一件產(chǎn)品質(zhì)量指標平均值為30.2.B設備生產(chǎn)的樣本的頻數(shù)分布表如下質(zhì)量指標值頻數(shù)2184814162根據(jù)樣本質(zhì)量指標平均值估計B設備生產(chǎn)一件產(chǎn)品質(zhì)量指標平均值為29.(2)A設備生產(chǎn)一件產(chǎn)品的利潤記為X,B設備生產(chǎn)一件產(chǎn)品的利潤記為Y,X240180120PY240180120P若以生產(chǎn)一件產(chǎn)品的利潤作為決策依據(jù),企業(yè)應加大B設備的生產(chǎn)規(guī)模.【點睛】本題考查平均數(shù)的估計值、離散隨機變量的期望,并利用期望作決策,是一個概率與統(tǒng)計綜合題,本題是一道中檔題.19、(1);(2)是定值,.【解析】

(1)設出M的坐標為,采用直接法求曲線的方程;(2)設AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點的坐標,同理可得E點的坐標,最后利用向量數(shù)量積算即可.【詳解】(1)設動點M的坐標為,由知∥,又在直線上,所以P點坐標為,又,點為的中點,所以,,,由得,即;(2)設直線AB的方程為,代入得,設,,則,,設,則,所以AT的直線方程為即,令,則,所以D點的坐標為,同理E點的坐標為,于是,,所以,從而,所以是定值.【點睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.20、(1)見解析(2)【解析】

(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論