PPT非飽和土力學(xué)大師Fredlund的演講_第1頁
PPT非飽和土力學(xué)大師Fredlund的演講_第2頁
PPT非飽和土力學(xué)大師Fredlund的演講_第3頁
PPT非飽和土力學(xué)大師Fredlund的演講_第4頁
PPT非飽和土力學(xué)大師Fredlund的演講_第5頁
已閱讀5頁,還剩86頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

WhatistheFutureforSlopeStabilityAnalysis?(AreWeApproachingtheLimitsofLimitEquilibriumAnalyses?)IntroductionLimitEquilibriummethodsofsliceshavebeen“Good”forthegeotechnicalengineeringprofessionsincethemethodshaveproducedfinancialbenefitEngineersareoftensurprisedattheresultstheyareabletoobtainfromLimitEquilibriummethodsSoWhyChange?ThereareFundamentalLimitationswithLimitEquilibriumMethodsofSlices??TheboundariesforaFREEBODYDIAGRAMarenotknown-TheSHAPEfortheslipsurfacemustbeassumedTheLOCATIONofthecriticalslipsurfacemustbefoundbyTRIALandERRORSHAPEandLOCATIONarethedrivingforceforaparadigmshiftObjectivesofthisPresentation:ToshowthegradualchangethatisemerginginthewaythatslopestabilityanalysescanbeundertakenToillustratethebenefitsassociatedwithimprovedproceduresfortheassessmentofstressesinaslopeOutlineofPresentationProvideabriefSummaryofcommonLimitEquilibriummethodsalongwiththeirlimitations(2-D&3-D)TaketheFIRSTstepforwardthroughuseofanindependentstressanalysisTaketheSECONDstepforwardthroughuseofOptimizationTechniquesIsaLimitEquilibriumAnalysisanUpperBoundorLowerBoundSolution?LimitEquilibriumMethodsprimarilysatisfytherequirementsofanupperboundtypeofsolutionReason:theshapeofslipsurfaceisselectedbytheanalystandtherebyadisplacementboundaryconditionisimposedLimitEquilibriumandFiniteElementBasedMethodsofAnalysesWWWWWWWWNLimitEquilibriumMethodofAnalysisSm=tadldlsndlFiniteElementBasedMethodofAnalysisldtadlQUESTION:HowcantheNormalStressatthebaseofaslicebemostaccuratelycomputed?ConsidertheFreeBodyDiagramsusedtocalculatetheNormalStress?AssumptionforallLimitEquilibriumAnalysisSoilsbehaveasMohr-Coulombmaterials(i.e.,friction,f',andcohesion,c')Factorofsafety,Fs,forthecohesivecomponentisequaltothefactorofsafetyforthefrictionalcomponentFactorofsafetyisthesameforallslices()[]msnsSFuFc=-+bfsb'tan'SummaryofAvailableEquationsAssociatedwithaLimitEquilibriumAnalysisEquations(knowns):QuantityMomentequilibriumnVerticalforceequilibriumnHorizontalforceequilibriumnMohr-Coulombfailurecriterionn4nUnknowns:QuantityTotalnormalforceatbaseofslicenShearforceatthebaseofslice,SmnInterslicenormalforce,En-1Intersliceshearforce,Xn-1Pointofapplicationofintersliceforce,En-1PointofapplicationofnormalforcenFactorofsafety,Fs16n-2SummaryofUnknownsAssociatedwithaLimitEquilibriumAnalysisOneFsperslidingmassForcesActingonEachSliceFocusonSmbyxSmXREREXLSlipsurfaceGroundsurfaceWhRN=snbbfNLPhreaticlineMobilizedShearForce,SmforSaturated-UnsaturatedSoils()[]()swasansmFuuFuFcSbfbfsbbtan'tan'-+-+=Onlynewvariablerequiredforsolvingsaturated-unsaturatedsoilsproblemsistheshearforcemobilizedφb=Frictionanglewithrespecttomatricsuctionua=Pore-airpressureuw=Pore-waterpressure[]Momentequilibrium,Fm:Forceequilibrium,Ff:???-?t?yü???íì÷÷????è?-+=NfWx'tanR'tantanuNR'cFbwmfffbb??tyü?íì÷÷????è?-+=aafffbabsincos'tan'tantancos'NuNcFbwfPore-airpressuresareassumedtobezerogaugeNormalforceatbaseofslice:LimitEquilibriummethodsdifferintermsofhow(XR-XL)iscomputedandoverallstaticssatisfiedLimitEquilibriumproblemisindeterminate:Canapplyanassumption(Historicalsolution)Canutilizeadditionalphysics(Futuresolution)()FFuFcXXWNbwLR'tansincostansinsin'faafabab++---=sxbaArea=Interslicenormalforce(E)widthofslice,bsxtxysyDistance(m)Elevation

(m)txybaArea=Intersliceshearforce(X)VerticalsliceDistance(m)Elevation

(m)ò=baxydyXtò=baxdyEsStressesontheBoundaryBetweenSlicesMorgenstern&Price,1965SummaryofLimitEquilibriumMethodsandAssumptionsMethod

EquilibriumSatisfied

Assumptions

Ordinary

Moment,tobase

EandX=0

Bishop’sSimplified

Vertical,Moment

Eishorizontal,X=0

Janbu’sSimplified

Vertical,Horizontal

Eishorizontal,X=0,empiricalcorrectionfactor,f0,accountsforintersliceshearforces

Janbu’sGeneralized

Vertical,Horizontal

Eislocatedbyanassumedlineofthrust

Spencer

Vertical,Horizontal,Moment

ResultantofEandXareofconstantslope

ForcesActingonOneSliceinOrdinaryorConventionalMethodhWbbaN=sbnNSmForcesActingonOneSliceinBishop’’sSimplifiedandJanbu’sSimplifiedMethodshWbbaN=sbnNSmERELSummaryofLimitEquilibriumMethodsandAssumptionsDirectionofXandEistheaverageofthegroundsurfaceslopeandtheslopeatthebaseofasliceVerticalHorizontalLoweandKarafiathDirectionofXandEisparalleltothegroundVerticalHorizontalCorpsofEngineersDirectionofEandXisdefinedbyanarbitraryfunction.PercentofthefunctionrequiredtosatisfymomentandforceequilibriumiscalledλVerticalHorizontalMomentMorgenstern-Price,GLEAssumptionsEquilibriumSatisfiedMethodForcesActingonOneSliceinSpencer’s,Morgenstern-Price,andGLEMethodshWbbaN=sbnNSmERELXRXLVariousIntersliceForceFunctionsProposedbyMorgenstern&Price(1965)Spencer’sWilsonandFredlund(1983)Usedafiniteelementstressanalysis(withgravityswitchedon)todetermineashapefortheIntersliceForceFunctionIntersliceForceFunctionforaDeep-seatedSlipSurfaceThrougha1:2SlopeX=Eλf(x)DefinitionofDimensionlessDistancef(x)islargestatmid-pointInflectionpointsnearcrest&toeGeneralizedFunctionalShapewhere:K=magnitudeoffunctionatmid-slopee=baseofnaturallogC=variabletodefineinflectionpointn=variabletodefinesteepnessω=dimensionlessx-position()2/)(nnCKexfw-=WilsonandFredlund,1983X=Eλf(x)DimensionlessDistanceUniquefunctionof““slopeangle””forallslipsurfaces“C”coefficientversusslopeangleUniquefunctionof““slopeangle””forallslipsurfaces“n”coefficientversustangentofslopeangleComparisonofFactorsofSafetyCircularSlipSurface01.801.851.901.952.002.002.25lJanbu’’sGeneralizedSimplifiedBishopSpencerMorgenstern-Pricef(x)=constantOrdinary=1.928FfFmFredlundandKrahn1975FactorofsafetyMomentandForceLimitEquilibriumFactorsofSafetyForaCirculartypeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisFredlundandKrahn,1975Lambda,lFactorofsafetyForceandMomentLimitequilibriumFactorsofSafetyforaplanartoeslipsurfaceForcelimitequilibriumanalysisMomentlimitequilibriumanalysisLambda,lFactorofsafetyKrahn2003ForceandMomentLimitequilibriumFactorsofSafetyforacompositeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisLambda,lFactorofsafetyFredlundandKrahn1975ForceandMomentLimitequilibriumFactorsofSafetyfora““SlidingBlock”typeslipsurfaceMomentlimitequilibriumanalysisForcelimitequilibriumanalysisLambda,lFactorofsafetyKrahn2003ExtensionsofMethodsofSlicestoThree-dimensionalMethodsofColumnsHovland(1977)–3-DofOrdinaryChenandChameau(1982)–3-DofSpencerCavounidis(1987)–3-DFs>2-DFsHungr(1987)–3-DofBishopSimplifiedLamandFredlund(1993)–3-Dwithf(x)onall3planes;3-DofGLEShapeandLocationBecomeEvenMoreDifficulttoDefinein3-DTwoPerpendicularSectionsThrougha3-DSlidingMassSectionParalleltoMovementSectionPerpendiculartoMovementFreeBodyDiagramofaColumnwithAllIntersliceForcesParallelPerpendicularBaseIntersliceForceFunctionsforTwooftheDirectionsX/EV/PFirstStepForwardQuestion:IstheNormalStressatthebaseofeachsliceasaccurateascanbeobtained?IstheNormalStressonlydependentupontheforcesonaverticalslice?ImprovementofNormalStressComputationsFredlundandScoular1999LimitequilibriumandfiniteelementnormalstressesforatoeslipsurfaceFromlimitequilibriumanalysisFromfiniteelementanalysisLimitequilibriumandfiniteelementnormalstressesforadeep-seatedslipsurfaceFromfiniteelementanalysisFromlimitequilibriumanalysisLimitequilibriumandfiniteelementnormalstressesforananchoredslopeFromfiniteelementanalysisFromlimitequilibriumanalysisToillustrateproceduresforcombiningafiniteelementstressanalysiswithconceptsoflimitingequilibrium.(i.e.,finiteelementmethodofslopestabilityanalysis)TocompareresultsofafiniteelementslopestabilityanalysisandconventionallimitequilibriummethodsUsingLimitEquilibriumConceptsinaFiniteElementSlopeStabilityAnalysisObjective:Thecompletestressstatefromafiniteelementanalysiscanbe“imported”intoalimitequilibriumframeworkwherethenormalstressandtheactuatingshearstressarecomputedforanyselectedslipsurfaceHypothesisAssumption:Thestressescomputedfrom“switching-on”gravityaremorereasonablethanthestressescomputedonaverticalsliceMannerof““ImportingStresses”fromaFiniteElementAnalysisintoaLimitEquilibriumAnalysissnFinite

Element

Analysis

for

StressesLimit

Equilibrium

AnalysissntmMohrCircletmIMPORT:ActingNormalStressActuatingShearStressLimitEquilibriumAnalysisFiniteElementAnalysisforStressesBishop(1952)-stressesfromLimitEquilibriummethodsdonotagreewithactualsoilstressesCloughandWoodward(1967)-“meaningfulstabilityanalysiscanbemadeonlyifthestressdistributionwithinthestructurecanbepredictedreliably””Kulhawy(1969)-usednormalandshearstressesfromalinearelasticanalysistocomputefactorofsafety“EnhancedLimitStrengthMethod”BackgroundtoUsingStressAnalysesinSlopeStabilityStressLevelRezendiz1972Zienkiewiczetal1975Strength&StressLevelAdikariandCummins1985Enhancedlimitmethods(finiteelementanalysiswithalimitequilibriumFiniteElementSlopeStabilityMethodsDirectmethods(finiteelementanalysisonly)StrengthLevelKulhawy1969F[]--Z=1313?¢¢¢¢??è????÷÷?è????÷÷ìí???????üy???t???DDLLfssss{}F=(c+tan)--c+tanA1313¢¢¢?¢¢¢¢¢¢¢??è????÷÷?è????÷÷?è???÷ìí???????üy???t???sfsssssfDDLLf*F=(c+tan)K?¢¢¢?sftDDLLDefinitionofFactorofSafetyLoadincreasetofailureStrengthdecreasetofailureanalysis)DifferencesandSimilaritiesBetweentheFiniteElementSlopeStabilityandConventionalLimitEquilibriumDifferencesSolutionisdeterminateFactorofsafetyequationislinearSimilaritiesStillnecessarytoassumetheshapeoftheslipsurfaceandsearchbytrialanderrortolocatethecriticalslipsurfaceWhyhasn’’tFiniteElementSlopeStabilityMethodbeenextensivelyused?DifficultiesandperceptionsrelatedtothestressanalysisInabilitytotransferlargeamountsofdataandfindneededinformationNow:MicrocomputerhavedramaticallychangedourabilitytocombineFiniteElementandLimitEquilibriumanalysesDefinitionofFactorofSafetyKulhawy(1969)where:Sr=resistingshearstrengthorSm=mobilizedshearforce??=mrFEMSSFbfs}'tan)u('c{Swnr-+=ActuatingShearNormalStressAnalysisStudyUndertakenbyFredlundandScoular(1999)AdoptedtheKulhawy(1969)procedureUsedSigma/WandSlope/WPoisson’sratiorange=0.33to0.48Elasticmodulus,E=20,000to200,000kPaCohesion,c'=10to40kPaFriction,'=10to30degreesComparedconventionalLimitEquilibriumresultswithFiniteElementslopestabilityresultsLocationofCenterofaSectionalongtheSlipSurfacewithinaFiniteElementAnalysisxyx-Coordinatey-CoordinateSlipSurfaceFiniteElement(r,s)srFictitiousslicedefinedwiththeLimitEquilibriumanalysisCenterofthebaseofaslice(x,y)PresentationofFiniteElementSlopeStabilityResultsConditionsAnalyzed:DryslopePiezometriclineat3/4height,exitingattoeDryslope,partiallysubmergedPiezometriclineat1/2heightandsubmergedtomid-heightSelected2:1Free-StandingSlopewithaPiezometricLineExitingattheToeoftheSlope20406080100120204060800CrestPiezometricLineToe21x-Coordinate(m)Note:Dryslopewith&withoutpiezometricliney-Coordinate(m)Selected2:1PartiallySubmergedSlopewithaHorizontalPiezometricLineatMid-Slope20406080100120204060800CrestToe21x-Coordinate(m)WaterPiezometricLiney-Coordinate(m)Note:Dryslopewith&withoutpiezometricline050100150200250300203040506070x-Coordinate(m)Actingandrestrictingshearstress(kPa)CrestToeShearStrengthShearForcePoissonRatio,m=0.33ShearStrengthandShearForcefora2:1DrySlopeCalculatedUsingtheFiniteElementSlopeStabilityMethodLocalandGlobalFactorsofSafetyfora2:1DrySlope012345672025303540455055606570x-CoordinateFactorofSafetyCrestToeLocalF(mLocalF(m=0.33)BishopMethod,F=2.360=2.173GlobalFactorsofSafetyBishop2.360Janbu2.173GLE(F.E.function)2.356Fs(m=0.33)2.342Fs(m=0.48)2.339Ordinary2.226sJanbuMethod,FsssFs=2.342Fs=2.339=0.48)FactorsofSafetyVersusStabilityNumberfora2:1DrySlopeasaFunctionofc'0.00.51.01.52.02.50510152025StabilityNumber,[gHtanf¢/c¢]FactorofSafetyc¢=20kPac¢=10kPac=40kPaFs(m=0.33)Fs(m=0.48)Fs(GLE)2:1DrySlope¢FactorofSafetyVersusStabilityCoefficientfora2:1DrySlopeasaFunctionof0.00.51.01.52.02.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/gH]FactorofSafetyf¢=30°f¢=10°f¢=20°2:1DrySlopesFs(m=0.33)F(m=0.48)Fs(GLE)sFactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1SlopewithaPiezometricLine0.01.62.00.000.020.040.060.080.100.12StabilityCoefficient,[c'/gH]Factorofsafetyf=30°°f=20°°f=10°°2:1SlopewithpiezometriclineFs(m=0.33)Fs(m=0.48)Fs(GLE)LocationoftheCriticalSlipSurfaceforaSlopewithaPiezometricLinewithSoilPropertiesofc'=40kPaandf'=30°°70102010060504030908070110506040102030x

-

Coordinate

(m)80GLE

(F.E.

function)Fs

(m

=

0.33)Fs

(m

=

0.48)MethodXYRFactorofsafetyGLE(F.E.Function)58.556.037.91.741Fs(m=0.33)57.549.534.71.627Fs(m=0.48)57.553.037.81.661Y-Coordinate(m)LocationoftheCriticalSlipSurfaceforaSlopewithaPiezometricLinewheretheFactorofSafetyisClosestto1.070102010060504030908070506040102030110x

-

Coordinate

(m)80Fs

(m

=

0.48)Fs(m=0.33)GLE

(F.E.

function)sMethodXYRFactorofsafetyGLE(F.EFunction.63.559.039.61.102Fs(m=0.33)63.059.041.51.076F(m=0.48)61.559.542.31.100y-Coordinate(m)FactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1DrySlope,1/2Submerged0.00.51.01.52.02.53.03.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/gH]FactorofSafetyf¢=20°f¢=10°2:1Dryslope,one-halfsubmergedf¢=30°Fs(m=0.33)Fs(m=0.48)Fs(GLE)FactorofSafetyVersusStabilityCoefficientasaFunctionoffor2:1SlopeHalfSubmergedwithPiezometricLine0.00.51.01.52.02.50.000.020.040.060.080.100.12StabilityCoefficient,[c¢/H]FactorofSafetyf¢=30°f¢=10°f¢=20°2:1Slope,one-halfsubmergedgFs(m=0.33)Fs(m=0.48)Fs(GLE)1020100605040309080701107050604010203080Fs(m=0.33)Fs

(m

=

0.48)GLE(F.E.Function)sMethodXYRFactorofsafetyGLE(F.E.Function58.058.540.22.303Fs(m=0.33)52.550.531.82.259F(m=0.48)51.551.531.02.273LocationoftheCriticalSlipSurfaceforaHalfSubmergedSlopewheretheSoilPropertiesarec'=40kPaandf'=30°°x-Coordinate(m)y-Coordinate(m)ConclusionsfromStep1ForwardNormalandActuatingShearstressesfromafiniteelementanalysisappeartoprovideamorereasonablerepresentationofthestressstateinaslopeTheEnhancedLimitmethodbyKulhawy(1969)appearstoopenthewaytosimulatemorecomplexslopestabilityproblemsEnhancedLimitmethodscanreadilybeusedinroutineengineeringpracticeGlobalfactorsofsafetyappeartobeessentiallythesameformostsimpleslopesSelectionofPoisson’sratiohassomeeffectontheEnhancedLimitfactorofsafetyFactorsofSafetyappeartodifferslightlyfor:LowcohesionvaluesHighanglesofinternalfrictionHowdotheResultsfromEnhancedLimitMethodsComparetoLimitEquilibriumMethods?LocalFactorsofSafetycanalsobecomputedbytheEnhancedLimitMethodSecondStepForwardQuestion:IsitpossibleforthecomputertodeterminetheShapeofthecriticalslipsurface?IsitpossibleforthecomputertodeterminetheLocationofthecriticalslipsurface?ImprovementonShapeandLocationHaandFredlund2002OptimizationTechniques(i.e.,DynamicProgramming)canbeusedtofindthepathwaywhichminimizesafunctionoftheshearstrengthavailabletotheactuatingshearstresswithinasoilmassHypothesisAssumption:Thestressescomputedfrom“switching-on”gravitycanbeusedtorepresentthestressstateinthesoilmassSlopeStabilityAnalysisUsingDynamicProgrammingCombinedwithaFiniteElementStressAnalysisDynamicProgramming(DP)optimizationtechniquesforslopestabilityanalysis(Spencer‘‘sMethod)wasintroducedbyBaker(1980)Yamagami&Ueta(1988)andZouetal.(1995)improvedontheBaker(1980)solutionbycouplingDynamicProgrammingwithaFiniteElementstressanalysisDefinitionofFactorofSafetySmoothcurveDiscreteform(1)(2)"Stage"B"Statepoint""n+1"AY"i""1"Riii+1kjSijk...ii+1...Fs=(ShearStrength)/(ActuatingShearStress)òò=BABAfsdLdLFtt??==DD=niiiniiifsLLF11ttDefinitionof“ReturnFunction““;Gstage"i+1"stage"i"lijlijfttfijijjsijtijqkijsijtElement(ij)Element(ij)R=ResistingShearStrength:S=ActuatingShearStressFs=(ShearStrength)/(ActuatingShearStress)Difficulttominimize!?=D-=niiisfiLFG1)(ttdLFGsBAf)(tt-=ò?=-=niisiSFRG1)(ActuatingShearForcesandResistingShearS=ActuatingShearStressR=ResistingShearStrength??====D=neijijijneijijiiilSLS11tt??====D=neijijfneijijifilRLRiji11ttijbijwaijaijneijijiluuucR}tan)(tan)({'1'ffs-+-+=?=Definitionof“OptimalFunction“:MinimumValueof“ReturnFunction““=theoptimalfunctionobtainedatpoint{k}ofstage[i+1],=theoptimalfunctionobtainedatpoint{j}instage[i],and=thereturnfunctioncalculatedwhenpassingfromthestatepoint{j}instage[i]tothestatepoint{k}instage[i+1].where:Introducean““optimalfunction”,H=OptimalFunctionG=ReturnFunction?=-==niisiSFRGG1min)(minmin)(jHi),()()(1kjGjHkHiii+=+)(1kHi+)(jHi),(kjGiBoundaryConditionsof“OptimalFunction“Attheinitialstage,(i=1):Atthefinalstage,(i=n+1):where:=thenumberofstatepointsinthefinalstageH=OptimalFunction0)(1=jH1...1NPj=),()()(1kjGjHkHnnn+=+?=+-==niisimnSFRGkH11).()(...1=n+1NPk1+nNPTheMinimum(orOptimal)TravellingTimeProblemDYNAMICPROGRAMMINGSOLUTION116487511114121H1(1)=092747H1(1)=13AH(2)=812310B5674STAGENUMBER1234567d=(4,2)3G(1,2)=33105243252827224415532BATHEMINIMUMTRAVELLINGTIMEPROBLEMAnalyticalSchemeoftheDynamicProgrammingMethodEntrypoint"1""InitialABpoint"Y"Statepoint"...ii+1...XBB"n+1"X...StageNo."Exitpoint"Si"Gridelement"boundary""Searchingii+1kSearchinggridj

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論