2023屆福建省建陽外國語學校數學九年級上冊期末經典模擬試題含解析_第1頁
2023屆福建省建陽外國語學校數學九年級上冊期末經典模擬試題含解析_第2頁
2023屆福建省建陽外國語學校數學九年級上冊期末經典模擬試題含解析_第3頁
2023屆福建省建陽外國語學校數學九年級上冊期末經典模擬試題含解析_第4頁
2023屆福建省建陽外國語學校數學九年級上冊期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列命題中,為真命題的是()A.同位角相等 B.相等的兩個角互為對頂角C.若a2=b2,則a=b D.若a>b,則﹣2a<﹣2b2.點A(﹣3,2)關于x軸的對稱點A′的坐標為()A.(3,2) B.(3,﹣2) C.(﹣3,2) D.(﹣3,﹣2)3.為執(zhí)行“均衡教育”政策,某區(qū)2018年投入教育經費7000萬元,預計到2020年投入2.317億元,若每年投入教育經費的年平均增長百分率為x,則下列方程正確的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=23174.若A(﹣3,y1),,C(2,y3)在二次函數y=x2+2x+c的圖象上,則y1,y2,y3的大小關系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y15.如圖,在方格紙中,隨機選擇標有序號①②③④⑤中的一個小正方形涂黑,與圖中陰影部分構成軸對稱圖形的概率是()A. B. C. D.6.已知二次函數y=x2+2x-m與x軸沒有交點,則m的取值范圍是()A.m<-1 B.m>-1 C.m<-1且m≠0 D.m>-1且m≠07.如圖,在△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,下列說法正確的是()A.點O是△ABC的內切圓的圓心B.CE⊥ABC.△ABC的內切圓經過D,E兩點D.AO=CO8.如圖,平行四邊形ABCD中,E是BC延長線上一點,連結AE交CD于F,則圖中相似的三角形共有()A.1對 B.2對C.3對 D.4對9.對于二次函數,下列描述錯誤的是().A.其圖像的對稱軸是直線=1 B.其圖像的頂點坐標是(1,-9)C.當=1時,有最小值-8 D.當>1時,隨的增大而增大10.若關于的一元二次方程有實數根,則取值范圍是()A. B. C. D.11.已知二次函數()的圖象如圖,則下列說法:①;②該拋物線的對稱軸是直線;③當時,;④當時,;其中正確的個數是()A.4 B.3 C.2 D.112.同桌讀了:“子非魚焉知魚之樂乎?”后,興高采烈地利用電腦畫出了幾幅魚的圖案,請問:由左圖中所示的圖案平移后得到的圖案是()A. B. C. D.二、填空題(每題4分,共24分)13.若關于x的一元二次方程x2+2x+3k=0有兩個不相等的實數根,則k的取值范圍是_____.14.小杰在樓下點A處看到樓上點B處的小明的仰角是42度,那么點B處的小明看點A處的小杰的俯角等于_____度.15.為估計某水庫鰱魚的數量,養(yǎng)魚戶李老板先撈上150條鰱魚并在鰱魚身上做紅色的記號,然后立即將這150條鰱魚放回水庫中,一周后,李老板又撈取200條鰱魚,發(fā)現帶紅色記號的魚有三條,據此可估計出該水庫中鰱魚約有________條.16.若正六邊形外接圓的半徑為4,則它的邊長為_____.17.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為_____.18.如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若△PAB與△PCD是相似三角形,則BP的長為_____________三、解答題(共78分)19.(8分)如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.20.(8分)已知二次函數y=x2+2mx+(m2﹣1)(m是常數).(1)若它的圖象與x軸交于兩點A,B,求線段AB的長;(2)若它的圖象的頂點在直線y=x+3上,求m的值.21.(8分)某商店銷售一種商品,每件成本8元,規(guī)定每件商品售價不低于成本,且不高于20元,經市場調查每天的銷售量y(件)與每件售價x(元)滿足一次函數關系,部分數據如下表:售價x(元件)1011121314x銷售量y(件)100908070(1)將上面的表格填充完整;(2)設該商品每天的總利潤為w元,求w與x之間的函數表達式;(3)計算(2)中售價為多少元時,獲得最大利潤,最大利潤是多少?22.(10分)隨著技術的發(fā)展進步,某公司2018年采用的新型原料生產產品.這種新型原料的用量y(噸)與月份x之間的關系如圖1所示,每噸新型原料所生產的產品的售價z(萬元)與月份x之間的關系如圖2所示.已知將每噸這種新型原料加工成的產品的成本為20萬元.(1)求出該公司這種新型原料的用量y(噸)與月份x之間的函數關系式;(2)若該公司利用新型原料所生產的產品當月都全部銷售,求哪個月利潤最大,最大利潤是多少?23.(10分)已知拋物線經過點和點.求拋物線的解析式;求拋物線與軸的交點的坐標(注:點在點的左邊);求的面積.24.(10分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經過點A(﹣3,0)和點B(2,0),直線y=h(h為常數,且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.25.(12分)在平行四邊形ABCD中,點E是AD邊上的點,連接BE.(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;(2)如圖2,點F是平行四邊形外一點,FB=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.26.(1)3tan30°-tan45°+2sin60°(2)

參考答案一、選擇題(每題4分,共48分)1、D【解析】根據同位角、對頂角和等式以及不等式的性質,逐一判斷選項,即可.【詳解】A、兩直線平行,同位角相等,原命題是假命題;B、相等的兩個角不一定互為對頂角,原命題是假命題;C、若a2=b2,則a=b或a=﹣b,原命題是假命題;D、若a>b,則﹣2a<﹣2b,是真命題;故選:D.【點睛】本題主要考查真假命題的判斷,熟練掌握常用的公理,定理,推論和重要結論,是解題的關鍵.2、D【分析】直接利用關于x軸對稱點的性質得出符合題意的答案.【詳解】解:點A(﹣3,2)關于x軸的對稱點A′的坐標為:(﹣3,﹣2),故選:D.【點睛】本題考查了關于x軸對稱的點的坐標特征,關于x軸對稱的點:橫坐標不變,縱坐標互為相反數.3、C【分析】本題為增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設每年投入教育經費的年平均增長百分率為x,再根據“2018年投入7000萬元”可得出方程.【詳解】設每年投入教育經費的年平均增長百分率為x,則2020年的投入為7000(1+x)2=23170由題意,得7000(1+x)2=23170.故選:C.【點睛】此題考查了由實際問題抽象出一元二次方程的知識,平均增長率問題,一般形式為a(1+x)2=b,a為起始時間的有關數量,b為終止時間的有關數量.4、A【分析】求出二次函數的對稱軸,再根據二次函數的增減性判斷即可.【詳解】解:對稱軸為直線x=﹣=﹣1,∵a=1>0,∴x<﹣1時,y隨x的增大而減小,x>﹣1時,y隨x的增大而增大,∴y2<y1<y1.故選:A.【點睛】本題考查了二次函數圖象上點的坐標特征,求出對稱軸解析式,然后利用二次函數的增減性求解是解題的關鍵.5、C【詳解】解:根據題意,在方格紙中,隨機選擇標有序號①②③④⑤中的一個小正方形涂黑,共有5種等可能的結果,使與圖中陰影部分構成軸對稱圖形的有②④⑤,3種情況,因此可知使與圖中陰影部分構成軸對稱圖形的概率為故選C6、A【分析】函數y=x2+2x-m的圖象與x軸沒有交點,用根的判別式:△<0,即可求解.【詳解】令y=0,即:x2+2x-m=0,△=b2?4ac=4+4m<0,即:m<-1,故選:A.【點睛】本題考查的是二次函數圖象與x軸的交點,此類題目均是利用△=b2?4ac和零之間的關系來確定圖象與x軸交點的數目,即:當△>0時,函數與x軸有2個交點,當△=0時,函數與x軸有1個交點,當△<0時,函數與x軸無交點.7、A【分析】由∠BAC的平分線AD與∠ACB的平分線CE交于點O,得出點O是△ABC的內心即可.【詳解】解:∵△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,∴點O是△ABC的內切圓的圓心;故選:A.【點睛】本題主要考察三角形的內切圓與內心,解題關鍵是熟練掌握三角形的內切圓性質.8、C【分析】根據平行四邊形的對邊平行,利用“平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似”找出相似三角形,然后即可選擇答案.【詳解】在平行四邊形ABCD中,AB∥CD,BC∥AD,所以,△ABE∽△FCE,△FCE∽△FDA,△ADF∽△EBA,共3對.故選C.【點睛】本題考查了相似三角形的判定,利用平行四邊形的對邊互相平行的性質,再結合“平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似”即可解題9、C【分析】將解析式寫成頂點式的形式,再依次進行判斷即可得到答案.【詳解】=,∴圖象的對稱軸是直線x=1,故A正確;頂點坐標是(1,-9),故B正確;當x=1時,y有最小值-9,故C錯誤;∵開口向上,∴當>1時,隨的增大而增大,故D正確,故選:C.【點睛】此題考查函數的性質,熟記每種函數解析式的性質是解題的關鍵.10、D【分析】根據△=b2-4ac≥0,一元二次方程有實數根,列出不等式,求解即可.【詳解】解:∵關于x的一元二次方程有實數根,

解得:.

故選:D.【點睛】本題考查一元二次方程根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數根;②當△=0時,方程有兩個相等的實數根;③當△<0時,方程無實數根.11、B【分析】由題意根據二次函數圖像的性質,對所給說法進行依次分析與判斷即可.【詳解】解:∵拋物線與y軸交于原點,∴c=0,故①正確;∵該拋物線的對稱軸是:,∴該拋物線的對稱軸是直線,故②正確;∵,有,,∴當時,,故③錯誤;∵,則有,由圖像可知時,,∴當時,,故④正確.故選:B.【點睛】本題考查二次函數圖象與系數的關系.二次函數y=ax2+bx+c(a≠0)系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數確定.12、B【解析】根據平移的性質:“平移不改變圖形的形狀和大小”來判斷即可.【詳解】解:根據“平移不改變圖形的形狀和大小”知:左圖中所示的圖案平移后得到的圖案是B項,故選B.【點睛】本題考查了平移的性質,平移的性質是“經過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行且相等;平移不改變圖形的形狀、大小和方向”.二、填空題(每題4分,共24分)13、k<【分析】根據當△>0時,方程有兩個不相等的兩個實數根可得△=4﹣12k>0,再解即可.【詳解】解:由題意得:△=4﹣12k>0,解得:k<.故答案為:k<.【點睛】本題考查的是根的判別式,即一元二次方程ax2+bx+c=0(a≠0)中,當△>0時,方程有兩個不相等的兩個實數根.14、1【解析】根據題意畫出圖形,然后根據平行線的性質可以求得點B處的小明看點A處的小杰的俯角的度數,本題得以解決.【詳解】解:由題意可得,∠BAO=1°,∵BC∥AD,∴∠BAO=∠ABC,∴∠ABC=1°,即點B處的小明看點A處的小杰的俯角等于1度,故答案為:1.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解答本題的關鍵是明確題意,利用數形結合的思想解答.15、10000【解析】試題解析:設該水庫中鰱魚約有x條,由于李老板先撈上150條鰱魚并在上做紅色的記號,然后立即將這150條鰱魚放回水庫中,一周后,李老板又撈取200條鰱魚,數一數帶紅色記號的魚有三條,由此依題意得200:3=x:150,∴x=10000,∴估計出該水庫中鰱魚約有10000條.16、1【分析】根據正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的外接圓半徑等于1,則正六邊形的邊長是1.故答案為:1.【點睛】本題考查了正多邊形和圓,利用正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形得出是解題的關鍵.17、1+【分析】利用二次函數圖象上點的坐標特征可求出點A、B、D的坐標,進而可得出OD、OA、OB,根據圓的性質可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據CD=CO+OD即可求出結論.【詳解】當x=0時,y=(x﹣1)2﹣4=﹣1,∴點D的坐標為(0,﹣1),∴OD=1;當y=0時,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點A的坐標為(﹣1,0),點B的坐標為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.【點睛】先根據二次函數與一元二次方程的關系,勾股定理,熟練掌握二次函數與一元二次方程的關系是解答本題的關鍵.18、1或2【分析】設BP=x,則CP=BC-BP=3-x,易證∠B=∠C=90°,根據相似三角形的對應頂點分類討論:①若△PAB∽△PDC時,列出比例式即可求出BP;②若△PAB∽△DPC時,原理同上.【詳解】解:設BP=x,則CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC時∴即解得:x=1即此時BP=1;②若△PAB∽△DPC時∴即解得:即此時BP=1或2;綜上所述:BP=1或2.故答案為:1或2.【點睛】此題考查的是相似三角形的判定及性質,掌握相似三角形的對應邊成比例列方程是解決此題的關鍵.三、解答題(共78分)19、樹高為5.5米【解析】根據兩角相等的兩個三角形相似,可得△DEF∽△DCB,利用相似三角形的對邊成比例,可得,代入數據計算即得BC的長,由AB=AC+BC,即可求出樹高.【詳解】∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米)答:樹高為5.5米.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.20、AB=2;(2)m=1.【分析】(1)令y=0求得拋物線與x軸的交點,從而求得兩交點之間的距離即可;(2)用含m的式子表示出頂點坐標,然后代入一次函數的解析式即可求得m的值.【詳解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函數y=x2+2mx+(m2﹣1),∴頂點坐標為(﹣2m,),即:(﹣2m,﹣1),∵圖象的頂點在直線y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【點睛】本題考查了解二次函數的問題,掌握二次函數的性質以及解二次函數的方法是解題的關鍵.21、(1)見解析;(2)w=﹣10x2+280x﹣1600;(3)售價為14元時,獲得最大利潤,最大利潤是360元.【分析】(1)設y=kx+b,由待定系數法可列出方程組:,解得:則y=﹣10x+200,當x=14時,y=60.(2)由題意得,w與x之間的函數表達式為:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售價為14元時,獲得最大利潤,最大利潤是360元.【詳解】解:(1)設銷售量y(件)與每件售價x(元)滿足一次函數關系為y=kx+b,∴,解得:,∴銷售量y(件)與每件售價x(元)滿足一次函數關系為y=﹣10x+200,當x=14時,y=60,故答案為:60,﹣10x+200;(2)由題意得,w與x之間的函數表達式為:w=(x﹣8)(﹣10x+200)=﹣10x2+280x﹣1600;(3)∵w=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,故售價為14元時,獲得最大利潤,最大利潤是360元.【點睛】本題的考點是一次函數及二次函數的綜合應用.方法是根據題意列出函數式,再根據二次函數的性質求解.22、(1);(2)四月份利潤最大,最大為1920元【分析】(1)根據圖象利用待定系數法確定函數的解析式即可;(2)配方后確定最值即可.【詳解】解:(1)1﹣6月份是一次函數,設y=kx+b,把點(1,50),(6,100)代入,得:,解得:,∴;(2)設利潤為w元,當7≤x≤12時,w=100×35=3500元.當1≤x≤6時,w=(x﹣20)y=﹣30x2+240x+1440=﹣30(x﹣4)2+1920,故當x=4時,w取得最大值1920,即四月份利潤最大,最大為1920元.【點睛】本題考查了二次函數的實際問題中最大利潤問題,解題的關鍵是求出函數解析式,熟悉二次函數的性質.23、(1);(2)點,點;(3)6.【分析】(1)將點和點代入即可求出解析式;(2)令y=0,解出的x的值即可得到點A、B的坐標;(3)根據點坐標求得,代入面積公式計算即可.【詳解】(1)把點和點代入得解得所以拋物線的解析式為:;(2)把代入,得,解得,點在點的左邊,點,點;(3)連接AC、BC,由題意得,.【點睛】此題考查待定系數法求二次函數的解析式,二次函數圖形與一元二次方程的關系,利用點坐標求圖象中三角形的面積.24、(1)y=﹣x2﹣x+1;(2)當h=3時,△AEF的面積最大,最大面積是.(3)存在,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【分析】(1)利用待定系數法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數的性質即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設經過點A和點C的直線的解析式為y=mx+n,則,解得,∴經過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設D(m,﹣3m+1).①當BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【點睛】此題考查了待定系數法求函數的解析式、二次函數的性質、等腰三角形的性質、勾股定理一次函數的應用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數形結合思想的應用.25、(1)26;(2)見解析【分析】(1)由平行四邊形的性質得出AD=BC=8,AB=CD,AD∥BC,由平行線的性質得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出結果;(2)連接CE,過點C作CK∥BF交BE于K,則∠FBG=∠CKG,由點G是CF的中點,得出FG=CG,由AAS證得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四邊形的性質得出∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,由平行線的性質得出∠DEC=∠BCE,∠AEB=∠KBC,易證∠EKC=∠D,∠CKB=∠BAE,由AAS證得/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論