1.230度,45度,60度角的三角函數(shù)值課時練習(含答案解析)_第1頁
1.230度,45度,60度角的三角函數(shù)值課時練習(含答案解析)_第2頁
1.230度,45度,60度角的三角函數(shù)值課時練習(含答案解析)_第3頁
1.230度,45度,60度角的三角函數(shù)值課時練習(含答案解析)_第4頁
1.230度,45度,60度角的三角函數(shù)值課時練習(含答案解析)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

7北師大版數(shù)學九年級下冊第一章第二節(jié) 304560角的三角函數(shù)值課時練習、單選題(共15題)1.在RtAABC中,/C=90°,若3cosB=一5,貝UsinB的值是(1.在RtAABC中,/C=90°,若3cosB=一5,貝UsinB的值是(B.C.答案:解析:解答:sin2B+cos2B=l3cosB=一5sin2B=1-(3)5216"25'、…a 4為銳角,,sinB=-,5 . . 3 分析:根據(jù)sin2B+cos2B=1和cosB=3即可求出答案.52.在RtAABC中,/C=90°,sinA=—,則2.在RtAABC1312A.—131212A.—1312£d.1212答案:B解析:解答:?.在RtAABC解析:解答:?.在RtAABC中,/C=90,sinA=毀勺AB13???設???設BC=5k,則AB=13k,AC=.AB2AC=.AB2BC212k512故選B.分析:本題考查了三角函數(shù)的定義,正確理解三角函數(shù)可以轉化成直角三角形的邊的比值,是解題的關鍵.根據(jù)勾股定理可以得到:,,tanA=^C旦12k3.若a為銳角,且sino=,則tan”為( )5A.—B.A.—B.25C.3D.4

4 3答案:D解析:解答:由“為銳角,且sin=—,得cos=J1sin2解析:解答:由“為銳角,且sin=—,得cos=J1sin2ah(―)2—,5 \ 5 54sina54tan= ——,cosa335故選:D.分析:根據(jù)同角三角函數(shù)的關系,可得“余弦,根據(jù)正弦、余弦、正切的關系,可得答案4.在直角坐標系中,P是第一象限內的點,OP與x軸正半軸的夾角一,一4a的正切值是一,則cos”3的值是(B.C.解析:解答:過點P作PE^x軸于點E,.tan圻PEOE???設PE=4x,OE=3x,在RtAOPE中,由勾股定理得OP=、pe2OE25xOEcosa=OP故選:C.分析:本題考查了勾股定理及同角的三角函數(shù)關系,解答本題的關鍵是表示出OP的長度5.如果分析:本題考查了勾股定理及同角的三角函數(shù)關系,解答本題的關鍵是表示出OP的長度5.如果a是銳角,且sina=3,那么cos(90°5-a)的值為(5B.5B.一4C.解析:解答:為銳角,sina=—cos(90°解析:解答:為銳角,sina=—cos(90°5故選C.分析:根據(jù)互為余角三角函數(shù)關系,解答即可.6.在故選C.分析:根據(jù)互為余角三角函數(shù)關系,解答即可.6.在RtAABC中,若/C=90,cosA=~~,則sinA的值為(25A.24B.-C.242525D.A.24B.-C.242525D.2524答案:A解析:解答:???RtAABC中,/C=90 7AC,/A是銳角,cosA=—— 25AB'???設AB=25x???設AB=25xAC=7x,由勾股定理得:BC=24x,BCsinA= BCsinA= AB2425,故選A分析:先根據(jù)特殊角的三角函數(shù)值求出/A的值,再求出sinA的值即可.7.在RtAABC中,/分析:先根據(jù)特殊角的三角函數(shù)值求出/A的值,再求出sinA的值即可.7.在RtAABC中,/C=90°,若sinA=—,則tanB=(3,53.5 5D.答案:D解析:解答:【解答】解:由在RtAABC中,/C=90°,若sinA=—,得cosB=sinA=—.3 3由同角三角函數(shù),得sinB=.1cos2BsinBtanB=一cosB分析:本題考查了互為余角三角函數(shù)的關系,利用了互余兩角三角函數(shù)的關系,同角三角函數(shù)關系.8.計算:cos8.計算:cos245+sin245B.1D.-2B.1D.-22答案:D解析:解答:::cos45°=sin45=二22解析:解答:::cos45°=sin45=二22— .2一一cos45+sin45=22+(R=12故選:B分析:首先根據(jù)cos45°=sin45°=當,分別求出cos245°、sin245°的值是多少;然后把它們求和,求出cos245°+sin245。的值是多少即可..已知八3都是銳角,如果sina=cos3,那么a與3之間滿足的關系是( )A.a=3B.a+=90°C.o-3=90°D.3-0=90°答案:B解析:解答::a、3都是銳角,如果sina=cos3,sino=cos(90°-a)=cos3,.a+3=90°,故選:B.分析:直接根據(jù)余弦的定義即可得到答案..已知:sin232°+cos2o=1,則銳角a等于( )A.32°B.58°C.68°D,以上結論都不對答案:A解析:解答:sin2o+cos2a=1,a是銳角,???a=32°.故選A.分析:逆用同角三角函數(shù)關系式解答即可.已知銳角a,且sin奸cos37。,則a等于( )A.37°B.63°C.53°D,45°答案:C解析:解答:.sina=cos37°,a=90°-37°=53°.故選C.分析:根據(jù)一個角的正弦值等于它的余角的余弦值即可求解..在△ABC中,/C=90°,cosA=-,則tanB的值為( )2A.1B.73C.fD.1答案:C1解析:解答:由^ABC中,/C=90°,cosA=一,得2sinB=1.2由B是銳角,得

/B=30tanB=tan30=叵,故選:C.分析:根據(jù)互為余角兩角的關系,可得sinB,根據(jù)特殊角三角函數(shù)值,可得答案..cos45°的值等于(A.1B.—C.—D.332 2 2答案:B解析:解答:cos45°=Y22故選B.分析:將特殊角的三角函數(shù)值代入求解..sin60=( )A.-B.—C.—D.332 2 2答案:C解析:解答:sin60=—2故選C分析:原式利用特殊角的三角函數(shù)值解得即可得到結果.tan45°的值為(A.1A.1B.2「21C.一2D.五答案:答案:B解析:解答:當角度在0解析:解答:當角度在0到90。之間變化時,函數(shù)值隨著角度的增大而增大的三角函數(shù)是正弦和正切.故選B.分析:根據(jù)正弦和正切.故選B.分析:根據(jù)45。角這個特殊角的三角函數(shù)值,可得tan450=1,據(jù)此解答即可二、填空題(共二、填空題(共5題)16.2cos30解析:解答:原式二6故答案為:石.分析:此題考查了特殊角的三角函數(shù)值, 屬于基礎題,解答本題的關鍵是理解一些特殊角的三角函數(shù)值,需要我們熟練記憶17.如果銳角a滿足2coso=J2,那么=_.答案:45°解析:解答:???2cosa=J2,?一2..COS(X ,則a=45°.故答案為:45°分析:先求出COSa的值,然后根據(jù)特殊角的三角函數(shù)值求出 a的度數(shù)I8.tan60°-cos300=答案:立2-、3 ,3解析:解答:原式=6——2 2故答案為:-32分析:直接利用特殊角的三角函數(shù)值代入求出即可.計算:2sin600+tan45°=答案:331解析:解答:原式=2x近1J31,2故答案為:加1分析:根據(jù)特殊三角函數(shù)值,可得答案.在Rt△ABC中,/C=90°,2a=V3c則/A=答案:60°解析:解答:由題意,得:aY3c2??.sinA=a—. A=60°.c2故答案為:60。分析:本題考查了特殊角的三角函數(shù)值, 解答本題的關鍵是熟練記憶一些特殊角的三角函數(shù)三、解答題(共5題)21.已知63均為銳角,且滿足|sino--1|+(tans1)2=0,求”+冏值答案:75°解析:解答:.「|sin%1|+(tan伊1)2=0,2?-sin=-,tan3=1,2?a=30°,戶45°,貝Ua+=30°+45°=75°.故答案為:75°.分析:根據(jù)非負數(shù)的性質求出 sin外tan3的值,然后根據(jù)特殊角的三角函數(shù)值求出兩個角的度數(shù).22.計算:|-73|-(-4)-1+(百2)°-2cos30°5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論