2023屆浙江省杭州市蕭山區(qū)朝暉初級中學(xué)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測試題含解析_第1頁
2023屆浙江省杭州市蕭山區(qū)朝暉初級中學(xué)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測試題含解析_第2頁
2023屆浙江省杭州市蕭山區(qū)朝暉初級中學(xué)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測試題含解析_第3頁
2023屆浙江省杭州市蕭山區(qū)朝暉初級中學(xué)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測試題含解析_第4頁
2023屆浙江省杭州市蕭山區(qū)朝暉初級中學(xué)數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.2.二次函數(shù)部分圖象如圖所示,有以下結(jié)論:①;②;③,其中正確的是()A.①②③ B.②③ C.①② D.①③3.如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(1,0),對稱軸是直線x=-1,則ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1 C.x=-3 D.x=-24.如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是()A. B. C. D.5.下面空心圓柱形物體的左視圖是()A. B. C. D.6.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),說法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是拋物線上兩點,則y1>y2,其中說法正確的有()個.A.1 B.2 C.3 D.47.從一個不透明的口袋中摸出紅球的概率為,已知口袋中的紅球是3個,則袋中共有球的個數(shù)是()A.5 B.8 C.10 D.158.如圖,中,,,,則的長為()A. B. C.5 D.9.關(guān)于反比例函數(shù),下列說法不正確的是()A.函數(shù)圖象分別位于第一、第三象限B.當(dāng)x>0時,y隨x的增大而減小C.若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2D.函數(shù)圖象經(jīng)過點(1,2)10.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖所示,已知:點,,.在內(nèi)依次作等邊三角形,使一邊在軸上,另一個頂點在邊上,作出的等邊三角形分別是第1個,第2個,第3個,…,則第個等邊三角形的周長等于.12.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.13.把拋物線y=2x2先向下平移1個單位,再向左平移2個單位,得到的拋物線的解析式是_______.14.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.15.把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________.16.如圖,已知∠BAD=∠CAE,∠ABC=∠ADE,AD=3,AE=2,CE=4,則BD為_____.17.如圖,AC是⊙O的直徑,弦BD⊥AC于點E,連接BC過點O作OF⊥BC于點F,若BD=12cm,AE=4cm,則OF的長度是___cm.18.如圖,已知在中,.以為直徑作半圓,交于點.若,則的度數(shù)是________度.三、解答題(共66分)19.(10分)如圖,拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.(1)求出拋物線的解析式;(2)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.20.(6分)如圖,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M.(1)求這條拋物線的表達(dá)式.(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當(dāng)一個點到達(dá)終點時,另一個點立即停止運動,設(shè)運動時間為t秒.①求t的取值范圍.②若使△BPQ為直角三角形,請求出符合條件的t值;③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.21.(6分)如圖,在正方形中,是對角線上的一個動點,連接,過點作交于點.(1)如圖①,求證:;(2)如圖②,連接為的中點,的延長線交邊于點,當(dāng)時,求和的長;(3)如圖③,過點作于,當(dāng)時,求的面積.22.(8分)已知拋物線與軸的兩個交點是點,(在的左側(cè)),與軸的交點是點.(1)求證:,兩點中必有一個點坐標(biāo)是;(2)若拋物線的對稱軸是,求其解析式;(3)在(2)的條件下,拋物線上是否存在一點,使?如果存在,求出點的坐標(biāo);如果不存在,請說明理由.23.(8分)2019年九龍口詩詞大會在九龍口鎮(zhèn)召開,我校九年級選拔了3名男生和2名女生參加某分會場的志愿者工作.本次學(xué)生志愿者工作一共設(shè)置了三個崗位,分別是引導(dǎo)員、聯(lián)絡(luò)員和咨詢員.(1)若要從這5名志愿者中隨機(jī)選取一位作為引導(dǎo)員,求選到女生的概率;(2)若甲、乙兩位志愿者都從三個崗位中隨機(jī)選擇一個,請你用畫樹狀圖或列表法求出他們恰好選擇同一個崗位的概率.(畫樹狀圖和列表時可用字母代替崗位名稱)24.(8分)如圖,點A、B、C、D是⊙O上的四個點,AD是⊙O的直徑,過點C的切線與AB的延長線垂直于點E,連接AC、BD相交于點F.(1)求證:AC平分∠BAD;(2)若⊙O的半徑為,AC=6,求DF的長.25.(10分)如圖,在等邊△ABC中,AB=6,AD是高.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法)(2)在(1)所作的圖中,求線段AD,BD與弧所圍成的封閉圖形的面積.26.(10分)如圖,取△ABC的邊AB的中點O,以O(shè)為圓心AB為半徑作⊙O交BC于點D,過點D作⊙O的切線DE,若DE⊥AC,垂足為點E.(1)求證:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,則的長為.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論.【詳解】分兩種情況討論:①當(dāng)k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當(dāng)k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標(biāo)系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.2、A【分析】根據(jù)二次函數(shù)的性質(zhì),結(jié)合圖中信息,一一判斷即可解決問題.【詳解】由圖象可知,a<0,b<0,c>0∴,①正確;圖像與x軸有兩個交點,∴,②正確;對稱軸x=,∴,故③正確;故選A.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是靈活應(yīng)用圖中信息解決問題,屬于中考??碱}型.3、A【解析】已知拋物線y=ax2+bx+c與x軸的一個交點為A(1,0),對稱軸是直線x=-1,由此可得拋物線與x軸的另一個交點坐標(biāo)為(-3,0),所以方程ax2+bx+c=0的解是x1=-3,x2=1,故選A.4、D【分析】過點D作DE∥AB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D的坐標(biāo),代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DE∥AB交AO于點E∵DE∥AB∴∵∴∴∴∵點D在上∴∵∴故選D【點睛】本題主要考查平行線分線段成比例及反比例函數(shù),掌握平行線分線段成比例是解題的關(guān)鍵.5、A【解析】試題分析:找出從幾何體的左邊看所得到的視圖即可.解:從幾何體的左邊看可得,故選A.6、D【分析】由拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a﹣b=0,則可對②進(jìn)行判斷;根據(jù)拋物線與y軸的交點在x軸下方得到c<0,則abc<0,于是可對①進(jìn)行判斷;由于x=﹣1時,y<0,則得到a﹣2a+c<0,則可對③進(jìn)行判斷;通過點(﹣5,y1)和點(,y2)離對稱軸的遠(yuǎn)近對④進(jìn)行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線對稱軸為直線x=﹣=﹣1,∴b=2a>0,則2a﹣b=0,所以②正確;∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc<0,所以①正確;∵x=﹣1時,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正確;∵點(﹣5,y1)離對稱軸要比點(,y2)離對稱軸要遠(yuǎn),∴y1>y2,所以④正確.故答案為D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,靈活運用二次函數(shù)解析式和圖像是解答本題的關(guān)鍵..7、D【分析】根據(jù)概率公式,即可求解.【詳解】3÷=15(個),答:袋中共有球的個數(shù)是15個.故選D.【點睛】本題主要考查概率公式,掌握概率公式,是解題的關(guān)鍵.8、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點睛】本題考查解直角三角形.9、C【分析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征對D進(jìn)行判斷;根據(jù)反比例函數(shù)的性質(zhì)對A、B、C進(jìn)行判斷.【詳解】A.k=2>0,則雙曲線的兩支分別位于第一、第三象限,所以A選項的說法正確;B.當(dāng)x>0時,y隨著x的增大而減小,所以B選項的說法正確;C.若x1<0,x2>0,則y2>y1,所以C選項的說法錯誤;D.把x=1代入得y=2,則點(1,2)在的圖象上,所以D選項的說法正確.故選C.【點睛】本題考查了反比例函數(shù)的性質(zhì):反比例函數(shù)(k≠0)的圖象是雙曲線;當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減小;當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.10、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.【點睛】本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1為等邊三角形,∠A1AB1=60°,∴∠COA1=30°,則∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此類推,第n個等邊三角形的邊長等于.第n個等邊三角形的周長等于.12、1【解析】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關(guān)于x的方程,解之可得.【詳解】設(shè)四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質(zhì).13、y=2(x+2)2﹣1【解析】直接根據(jù)“上加下減、左加右減”的原則進(jìn)行解答即可.【詳解】由“左加右減”的原則可知,二次函數(shù)y=2x2的圖象向下平移1個單位得到y(tǒng)=2x2?1,由“上加下減”的原則可知,將二次函數(shù)y=2x2?1的圖象向左平移2個單位可得到函數(shù)y=2(x+2)2?1,故答案是:y=2(x+2)2?1.【點睛】本題考查的是二次函數(shù)圖象與幾何變換,熟練掌握規(guī)律是解題的關(guān)鍵.14、55°【分析】這道題可以根據(jù)CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點睛】此題主要考查三角形內(nèi)角度求解,解題的關(guān)鍵是熟知直角三角形的性質(zhì).15、【分析】兩塊三角板的邊與的交點所走過的路程,需分類討論,由圖①的點運動到圖②的點,由圖②的點運動到圖③的點,總路程為,分別求解即可.【詳解】如圖,兩塊三角板的邊與的交點所走過的路程,分兩步走:(1)由圖①的點運動到圖②的點,此時:AC⊥DE,點C到直線DE的距離最短,所以CF最短,則PF最長,根據(jù)題意,,,在中,∴;(2)由圖②的點運動到圖③的點,過G作GH⊥DC于H,如下圖,∵,且GH⊥DC,∴是等腰直角三角形,∴,設(shè),則,∴,∴,解得:,即,點所走過的路程:,故答案為:【點睛】本題是一道需要把旋轉(zhuǎn)角的概念和解直角三角形相結(jié)合求解的綜合題,考查學(xué)生綜合運用數(shù)學(xué)知識的能力.正確確定點所走過的路程是解答本題的關(guān)鍵.16、1【解析】根據(jù)相似三角形的判定和性質(zhì)定理即可得到結(jié)論.【詳解】解:∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE,∴=,∴,∴△ABD∽△ACE,∴,∴,∴BD=1,故答案為:1.【點睛】本題考查了相似三角形的判定和性質(zhì)定理,找對應(yīng)角或?qū)?yīng)邊的比值是解題的關(guān)鍵.17、.【分析】連接OB,根據(jù)垂徑定理和勾股定理即可求出OB,從而求出EC,再根據(jù)勾股定理即可求出BC,根據(jù)三線合一即可求出BF,最后再利用勾股定理即可求出OF.【詳解】連接OB,∵AC是⊙O的直徑,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm則EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案為.【點睛】此題考查的是垂徑定理和勾股定理,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.18、1【分析】首先連接AD,由等腰△ABC中,AB=AC,以AB為直徑的半圓交BC于點D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,繼而求得∠AOD的度數(shù),則可求得的度數(shù).【詳解】解:連接AD、OD,

∵AB為直徑,

∴∠ADB=90°,

即AD⊥BC,

∵AB=AC,

∴∠ABD=70°,

∴∠AOD=1°

∴的度數(shù)1°;

故答案為1.【點睛】此題考查了圓周角定理以及等腰三角形的性質(zhì),注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.三、解答題(共66分)19、(1)y=-x2+x-2;(2)點P為(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】(1)用待定系數(shù)法求出拋物線解析式;

(2)以A、P、M為頂點的三角形與△OAC相似,分兩種情況討論計算即可.【詳解】解:(1)∵該拋物線過點C(0,-2),∴可設(shè)該拋物線的解析式為y=ax2+bx-2.將A(4,0),B(1,0)代入,得,解得,∴此拋物線的解析式為.(2)存在,設(shè)P點的橫坐標(biāo)為m,則P點的縱坐標(biāo)為-m2+m-2,當(dāng)1<m<4時,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①當(dāng)==時,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②當(dāng)==時,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合題意,舍去),∴當(dāng)1<m<4時,P(2,1).類似地可求出當(dāng)m>4時,P(5,-2).當(dāng)m<1時,P(-3,-14)或P(0,-2),綜上所述,符合條件的點P為(2,1)或(5,-2)或(-3,-14)或(0,-2).【點睛】本題考查的知識點是二次函數(shù)綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)綜合題.20、(1);(2)①,②t的值為或,③當(dāng)t=2時,四邊形ACQP的面積有最小值,最小值是.【分析】(1)求出對稱軸,再求出y=與拋物線的兩個交點坐標(biāo),將其代入拋物線的頂點式即可;(2)①先求出A、B、C的坐標(biāo),寫出OB、OC的長度,再求出BC的長度,由運動速度即可求出t的取值范圍;②當(dāng)△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,分別證△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如圖,過點Q作QH⊥x軸于點H,證△BHQ∽△BOC,求出HQ的長,由公式S四邊形ACQP=S△ABC-S△BPQ可求出含t的四邊形ACQP的面積,通過二次函數(shù)的圖象及性質(zhì)可寫出結(jié)論.【詳解】解:(1)∵在拋物線中,當(dāng)x=﹣1和x=3時,y值相等,∴對稱軸為x=1,∵y=與拋物線有兩個交點,其中一個交點的橫坐標(biāo)是6,另一個交點是這條拋物線的頂點M,∴頂點M(1,),另一交點為(6,6),∴可設(shè)拋物線的解析式為y=a(x﹣1)2,將點(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴拋物線的解析式為(2)①在中,當(dāng)y=0時,x1=﹣2,x2=4;當(dāng)x=0時,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②當(dāng)△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,當(dāng)∠BPQ=90°時,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;當(dāng)∠PQB=90°時,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴,即,∴t=,綜上所述,t的值為或;③如右圖,過點Q作QH⊥x軸于點H,則∠BHQ=∠BOC=90°,∴HQ∥OC,∴△BHQ∽△BOC,∴,即,∴HQ=,∴S四邊形ACQP=S△ABC﹣S△BPQ=×6×3﹣(4﹣t)×t=(t﹣2)2+,∵>0,∴當(dāng)t=2時,四邊形ACQP的面積有最小值,最小值是.【點睛】本題考查了待定系數(shù)法求解析式,相似三角形的判定及性質(zhì),二次函數(shù)的圖象及性質(zhì)等,熟練掌握并靈活運用是解題的關(guān)鍵.21、(1)見解析;(2);;(3)面積為.【分析】(1)過點M作MF⊥AB于F,作MG⊥BC于G,由正方形的性質(zhì)得出∠ABD=∠DBC=45°,由角平分線的性質(zhì)得出MF=MG,證得四邊形FBGM是正方形,得出∠FMG=90°,證出∠AMF=∠NMG,證明△AMF≌△NMG,即可得出結(jié)論;(2)證明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性質(zhì)得出OM=OA=ON=AN=,OM⊥AN,證明△PAO∽△NAB,得出,求出OP=,即可得出結(jié)果;(3)過點A作AF⊥BD于F,證明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面積公式即可得出結(jié)果.【詳解】(1)證明:過點作于,作于,如圖①所示:,四邊形是正方形,,,,,四邊形是正方形,,,,,,在和中,,;(2)解:在中,由(1)知:,,,,,在中,,,,解得:,在中,,在中,是的中點,,,,,,,即:,解得:,;(3)解:過點作于,如圖③所示:,,,,,,,在和中,,,在等腰直角中,,,,,,的面積為.【點睛】本題是相似形綜合題目,考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的判定與性質(zhì)、直角三角形的性質(zhì)、勾股定理、角平分線的性質(zhì)等知識;本題綜合性強(qiáng),有一定難度,證明三角形相似和三角形全等是解題的關(guān)鍵.22、(1)見解析;(2);(3)或【分析】(1)將拋物線表達(dá)式變形為,求出與x軸交點坐標(biāo)即可證明;(2)根據(jù)拋物線對稱軸的公式,將代入即可求得a值,從而得到解析式;(3)分點P在AC上方和下方兩種情況,結(jié)合∠ACO=45°得出直線PC與x軸所夾銳角度數(shù),從而求出直線PC解析式,繼而聯(lián)立方程組,解之可得答案.【詳解】解:(1)=,令y=0,則,,則拋物線與x軸的交點中有一個為(-2,0);(2)拋物線的對稱軸是:=,解得:,代入解析式,拋物線的解析式為:;(3)存在這樣的點,,,如圖1,當(dāng)點在直線上方時,記直線與軸的交點為,,,,則,,則,,求得直線解析式為,聯(lián)立,解得或,,;如圖2,當(dāng)點在直線下方時,記直線與軸的交點為,,,,則,,,求得直線解析式為,聯(lián)立,解得:或,,,綜上,點的坐標(biāo)為,或,.【點睛】本題是二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的圖象和性質(zhì)、直線與拋物線相交的問題等.23、(1)隨機(jī)選取一位作為引導(dǎo)員,選到女生的概率為;(2)甲、乙兩位志愿者選擇同一個崗位的概率為.【分析】(1)直接利用概率公式求出即可;

(2)用列表法表示所有可能出現(xiàn)的情況,共9中可能的結(jié)果數(shù),選擇同一崗位的有三種,可求出概率.【詳解】(1)5名志愿者中有2名女生,因此隨機(jī)選取一位作為引導(dǎo)員,選到女生的概率為,即:P=,答:隨機(jī)選取一位作為引導(dǎo)員,選到女生的概率為.(2)用列表法表示所有可能出現(xiàn)的情況:∴.答:甲、乙兩位志愿者選擇同一個崗位的概率為.【點睛】本題考查了隨機(jī)事件發(fā)生的概率,關(guān)鍵是用列表法或樹狀圖表示出所有等可能出現(xiàn)的結(jié)果數(shù),用列表法或樹狀圖的前提是必須使每一種情況發(fā)生的可能性是均等的.24、(1)證明見解析;(2).【分析】(1)連接OC,先證明OC∥AE,從而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代換即可證得答案;(2)設(shè)OC交BD于點G,連接DC,先證明△ACD∽△AEC,從而利用相似三角形的性質(zhì)解得,再利用=cos∠FDC,代入相關(guān)線段的長可求得DF.【詳解】(1)證明:如圖,連接OC∵過點C的切線與AB的延長線垂直于點E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論