




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一、二重積分概念二、二重積分計算三、三重積分概念四、三重積分計算五、重積分應用重積分復習
一、二重積分概念積分區(qū)域積分和被積函數(shù)積分變量被積表示式面積元素(一)、定義(二)、幾何意義當被積函數(shù)大于零時,二重積分是以被積函數(shù)為曲頂、以積分區(qū)域為底曲頂柱體體積.當被積函數(shù)小于零時,二重積分是曲頂柱體體積負值.(三)、物理意義平面薄片質(zhì)量設有一平面薄片,占有面上閉區(qū)域,在點處面密度為,
假定在上連續(xù),
平面薄片質(zhì)量(四)存在條件(五)性質(zhì)性質(zhì)2性質(zhì)3對區(qū)域含有可加性性質(zhì)1當為常數(shù)時,性質(zhì)4若為D面積,性質(zhì)5特殊地則有若在上性質(zhì)6(估值不等式)性質(zhì)7(二重積分中值定理)解解例3求極限其中為。解因為被積函數(shù)在區(qū)域上連續(xù),依據(jù)積分中值定理知:存在使得解畢。二、二重積分計算(一)、利用直角坐標系計算二重積分其中函數(shù)、在區(qū)間上連續(xù).[先y后x]:平行于軸直線穿過區(qū)域內(nèi)部與其邊界最多交于兩點。[先x后y]平行于軸直線穿過區(qū)域內(nèi)部時與其邊界最多交于兩點。求二重積分步驟(1)畫出積分區(qū)域圖形,判斷類型;(2)定積分上下限(3)寫出二次積分再求即可.若區(qū)域如圖,則必須分割。在分割后三個區(qū)域上分別使用積分公式。假如被積函數(shù)含有等形式,則應選擇先對積分。注:解積分區(qū)域如圖由其中與兩坐標軸圍成.解:其中是由所圍區(qū)域,則等于()令由已知等式得兩邊在上取二重積分,則例2設連續(xù),且故選解得解(二)、利用極坐標系計算二重積分解
在極坐標系下
例2將(其中為圍成)化為極坐標下累次積分.在極坐標系下
解在極坐標系下
解在極坐標系下
解在極坐標系下
解和在極坐標系下
解例7
證三、三重積分概念定義:
物理意義:若,則三重積分值等于以為分布密度幾何體質(zhì)量.二重積分與三重積分有類似存在條件及性質(zhì).四、三重積分計算1.利用直角坐標計算三重積分方法1.投影法(“先z后xy”)方法2平行截面法先假設連續(xù)函數(shù)并將它看作某物體經(jīng)過計算該物體質(zhì)量引出以下各計算密度函數(shù),方法:當被積函數(shù)只含有一個變量用與此變量所在坐標軸垂直平面截積分區(qū)域所截面面積輕易求出時,用平行截面法比較簡單。方法1.投影法(“先一后二”)該物體質(zhì)量為細長柱體微元質(zhì)量為記作解范圍:方法2.截面法(“先二后一”)為底,dz為高柱形薄片質(zhì)量為該物體質(zhì)量為記作例
解解原式我們稱此種方法為平行截面法。當被積函數(shù)只含有一個變量用與此變量所在坐標軸垂直平面截積分區(qū)域所截面面積輕易求出時,用平行截面法比較簡單。2.利用柱坐標計算三重積分就稱為點M柱坐標.直角坐標與柱面坐標關系:坐標面分別為圓柱面半平面平面如圖所表示,在柱面坐標系中體積元素為所以其中適用范圍:當積分區(qū)域由柱面、錐面、旋轉(zhuǎn)拋物面與其它曲面圍成且被積函數(shù)含有以下形式:例(970105)計算其中為平面曲線解:旋轉(zhuǎn)曲面方程為繞軸旋轉(zhuǎn)一周形成曲面與平面所圍成區(qū)域。xyzo3.利用球坐標計算三重積分就稱為點M球坐標.直角坐標與球面坐標關系坐標面分別為球面半平面錐面如圖所表示,在球面坐標系中體積元素為所以有其中適用范圍:當積分區(qū)域由球面與錐面,球面與平面圍成且被積函數(shù)含有以下形式:例計算其中解解小結:1當積分區(qū)域由柱面、錐面、旋轉(zhuǎn)拋物面與其它曲面圍成且被積函數(shù)含有以下形式:時用柱坐標。2當積分區(qū)域由球面與錐面,球面與平面圍成且被積函數(shù)含有形式時用球坐標。2、被積函數(shù)在積分區(qū)域上關于三 個坐標軸補充:利用對稱性化簡三重積分計算使用對稱性時應注意:1、積分區(qū)域關于坐標面對稱性;奇偶性.解積分域關于三個坐標面都對稱,被積函數(shù)是奇函數(shù),例8
解利用球面坐標五、重積分應用★
二重積分1:二重積分被積函數(shù)等于1時,二重積分值等于積分區(qū)域面積.所以我們能夠利用二重積分求平面圖形面積.2:由二重積分幾何意義可知,二重積分可用來求體積.(當被積函數(shù)大于零時,二重積分是以被積函數(shù)為曲頂、以積分區(qū)域為底曲頂柱體體積.)一、平面面積、體積、質(zhì)量3:由二重積分物理意義可知,二重積分可用來求平面薄片質(zhì)量.例1求由曲面與曲面所圍成立體體積.解由得從而投影曲線例2求面密度為圓板質(zhì)量.解由二重積分物理意義可知設光滑曲面設它在D上則(二)、★曲面面積投影為d
,若光滑曲面方程為則有若光滑曲面方程為則有解上半球面在面上投影由得令所以,整個球面面積為
占有空間有界域
空間形體,體密度為空間形體質(zhì)量(二)、★三重積分
占有空間有界域
空間形體體積為
占有空間有界域
空間形體,體密度為空間形體質(zhì)量例求由曲面與曲面所圍成立體體積.*用三重積分計算*(三)、物體重心若物體為占有xoy面上區(qū)域D平面薄片,則它質(zhì)心坐標為其面密度—對x軸
靜矩—對y軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國食品級磷酸鹽行業(yè)投資規(guī)劃及發(fā)展前景研究報告
- 2025-2030年中國雕塑工藝品行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究報告
- 2025-2030年中國金屬酸洗行業(yè)發(fā)展趨勢及前景調(diào)研分析報告
- 2025-2030年中國辣椒紅色素市場運行態(tài)勢及投資戰(zhàn)略研究報告
- 2025年河北建筑安全員考試題庫
- 2025-2030年中國花露水運行趨勢及發(fā)展前景分析報告
- 2025-2030年中國磷酸二氫鉀行業(yè)運營狀況及發(fā)展趨勢分析報告
- 2025-2030年中國男士香水行業(yè)運營狀況及投資策略研究報告
- 唐山職業(yè)技術學院《國際人才管理》2023-2024學年第二學期期末試卷
- 2025人教版一年級下冊數(shù)學教學進度表
- 休學復學申請書
- 2025年四川司法警官職業(yè)學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 新建污水處理廠工程EPC總承包投標方案(技術標)
- 山東省德州市2024-2025學年高三上學期1月期末生物試題(有答案)
- 本人報廢車輛委托書
- 雙減政策與五項管理解讀
- 2025年道德與法治小學六年級下冊教學計劃(含進度表)
- 過橋資金操作流程
- 貨物學 課件1.2貨物的特性
- 《略陽名勝古跡》課件
評論
0/150
提交評論