版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
押/r/n第/r/n22/r/n題/r/n/r/n導(dǎo)數(shù)/r/n/r/n/r/n命題研究/r/n導(dǎo)數(shù)的應(yīng)用也/r/n一直是高考的熱點(diǎn),尤其是導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最/r/n值問(wèn)題/r/n是高考考查的重點(diǎn)內(nèi)容,有時(shí)也會(huì)考查導(dǎo)數(shù)的運(yùn)算/r/n、/r/n導(dǎo)數(shù)的幾何意義等/r/n,比較綜合/r/n./r/n解題秘籍/r/n1/r/n./r/n導(dǎo)數(shù)的幾何意義的應(yīng)用/r/n:/r/n(/r/n1/r/n)已知切點(diǎn)/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n過(guò)點(diǎn)/r/nP/r/n的切線(xiàn)方程:求出切線(xiàn)的斜率/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n,由點(diǎn)斜式寫(xiě)出方程;/r/n(/r/n2/r/n)已知切線(xiàn)的斜率為/r/nk/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n的切線(xiàn)方程:設(shè)切點(diǎn)/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,通過(guò)方程/r/nk/r/n=/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n解得/r/nx/r/n0/r/n,再由點(diǎn)斜式寫(xiě)出方程;/r/n(/r/n3/r/n)已知切線(xiàn)上一點(diǎn)/r/n(/r/n非切點(diǎn)/r/n)/r/n,求/r/ny/r/n=/r/nf/r/n(/r/nx/r/n)/r/n的切線(xiàn)方程:設(shè)切點(diǎn)/r/nP/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,利用導(dǎo)數(shù)求得切線(xiàn)斜率/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n,再由斜率公式求得切線(xiàn)斜率,列方程/r/n(/r/n組/r/n)/r/n解得/r/nx/r/n0/r/n,最后由點(diǎn)斜式或兩點(diǎn)式寫(xiě)出方程./r/n(/r/n4/r/n)若曲線(xiàn)的切線(xiàn)與已知直線(xiàn)平行或垂直,求曲線(xiàn)的切線(xiàn)方程時(shí),先由平行或垂直關(guān)系確定切線(xiàn)的斜率,再由/r/nk/r/n=/r/nf/r/n′(/r/nx/r/n0/r/n)/r/n求出切點(diǎn)坐標(biāo)/r/n(/r/nx/r/n0/r/n,/r/ny/r/n0/r/n)/r/n,最后寫(xiě)出切線(xiàn)方程./r/n(/r/n5/r/n)/r/n①/r/n在點(diǎn)/r/nP/r/n處的切線(xiàn)即是以/r/nP/r/n為切點(diǎn)的切線(xiàn),/r/nP/r/n一定在曲線(xiàn)上/r/n./r/n②/r/n過(guò)點(diǎn)/r/nP/r/n的切線(xiàn)即切線(xiàn)過(guò)點(diǎn)/r/nP/r/n,/r/nP/r/n不一定是切點(diǎn).因此在求過(guò)點(diǎn)/r/nP/r/n的切線(xiàn)方程時(shí),應(yīng)首先檢驗(yàn)點(diǎn)/r/nP/r/n是否在已知曲線(xiàn)上./r/n2/r/n.利用導(dǎo)數(shù)判斷或證明一個(gè)函數(shù)在給定區(qū)間上的單調(diào)性,實(shí)質(zhì)上就是判斷或證明不等式/r/n(/r/n)在給定/r/n區(qū)間上恒成立/r/n.一般步驟為:/r/n(/r/n1/r/n)求/r/nf/r/n′(/r/nx/r/n)/r/n;/r/n(/r/n2/r/n)確認(rèn)/r/nf/r/n′(/r/nx/r/n)/r/n在/r/n(/r/na/r/n,/r/nb/r/n)/r/n內(nèi)的符號(hào);/r/n(/r/n3/r/n)/r/n作出/r/n結(jié)論,/r/n時(shí)為增函數(shù),/r/n時(shí)為減函數(shù)./r/n3/r/n.由函數(shù)/r/n的單調(diào)性求參數(shù)的取值范圍的方法/r/n(/r/n1/r/n)可導(dǎo)函數(shù)在某一區(qū)間上單調(diào),實(shí)際上就是在該區(qū)間上/r/n(/r/n或/r/n)(/r/n在該區(qū)間的任意子區(qū)間內(nèi)都不恒等于/r/n0)/r/n恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,從而獲得參數(shù)的取值范圍;/r/n(/r/n2/r/n)可導(dǎo)函數(shù)在某一區(qū)間上存在單調(diào)區(qū)間,實(shí)際上就是/r/n(/r/n或/r/n)/r/n在該區(qū)間上存在解集,這樣就把函數(shù)的單調(diào)性問(wèn)題轉(zhuǎn)化成了不等式問(wèn)題;/r/n(/r/n3/r/n)若已知/r/n在區(qū)間/r/nI/r/n上的單調(diào)性,區(qū)間/r/nI/r/n中含有參數(shù)時(shí),可先求出/r/n的單調(diào)區(qū)間,令/r/nI/r/n是其單調(diào)區(qū)間的子集,從而可求出參數(shù)的取值范圍/r/n./r/n4/r/n.(/r/n1/r/n)求函數(shù)/r/n極值的方法:/r/n①/r/n確定函數(shù)/r/n的定義域./r/n②/r/n求導(dǎo)函數(shù)/r/n./r/n③/r/n求方程/r/n的根./r/n④/r/n檢查/r/n在方程的根的左、右兩側(cè)的符號(hào),確定極值點(diǎn).如果左/r/n正右負(fù)/r/n,那么/r/n在這個(gè)根處取得極大值;如果/r/n左負(fù)右正/r/n,那么/r/n在這個(gè)根處取得極小值;如果/r/n在這個(gè)根的左、右兩側(cè)符號(hào)不變,則/r/n在這個(gè)根處沒(méi)有極值./r/n(/r/n2/r/n)利用極值求參數(shù)的取值范圍:確定函數(shù)的定義域,/r/n求導(dǎo)數(shù)/r/n,求方程/r/n的根的情況,/r/n得關(guān)于/r/n參數(shù)的方程/r/n(/r/n或不等式/r/n)/r/n,進(jìn)而確定參數(shù)的取值或范圍/r/n./r/n5/r/n.求函數(shù)/r/nf/r/n(/r/nx/r/n)/r/n在/r/n[/r/na/r/n,/r/nb/r/n]/r/n上最值的方法/r/n(/r/n1/r/n)若函數(shù)/r/nf/r/n(/r/nx/r/n)/r/n在/r/n[/r/na/r/n,/r/nb/r/n]/r/n上單調(diào)遞增或遞減,則/r/nf/r/n(/r/na/r/n)/r/n與/r/nf/r/n(/r/nb/r/n)/r/n一個(gè)為最大值,一個(gè)為最小值./r/n(/r/n2/r/n)若函數(shù)/r/nf/r/n(/r/nx/r/n)/r/n在區(qū)間/r/n(/r/na/r/n,/r/nb/r/n)/r/n內(nèi)有極值,先求出函數(shù)/r/nf/r/n(/r/nx/r/n)/r/n在區(qū)間/r/n(/r/na/r/n,/r/nb/r/n)/r/n上的極值,與/r/nf/r/n(/r/na/r/n)/r/n、/r/nf/r/n(/r/nb/r/n)/r/n比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值./r/n(/r/n3/r/n)函數(shù)/r/nf/r/n(/r/nx/r/n)/r/n在區(qū)間/r/n(/r/na/r/n,/r/nb/r/n)/r/n上有唯一/r/n一個(gè)/r/n極值點(diǎn)時(shí),這個(gè)極值點(diǎn)就是最大/r/n(/r/n或最小/r/n)/r/n值點(diǎn)./r/n真題回顧/r/n1/r/n.(/r/n2021·/r/n浙江/r/n·/r/n高考真題)設(shè)/r/na/r/n,/r/nb/r/n為實(shí)數(shù),且/r/n,函數(shù)/r/n(/r/n1/r/n)求函數(shù)/r/n的單調(diào)區(qū)間;/r/n(/r/n2/r/n)若對(duì)任意/r/n,函數(shù)/r/n有兩個(gè)不同的零點(diǎn),求/r/na/r/n的取值范圍;/r/n(/r/n3/r/n)當(dāng)/r/n時(shí),證明:對(duì)任意/r/n,函數(shù)/r/n有兩個(gè)不同的零點(diǎn)/r/n,滿(mǎn)足/r/n./r/n(/r/n注:/r/n是自然對(duì)數(shù)的底數(shù)/r/n)/r/n【詳解】/r/n(1)/r/n,/r/n①/r/n若/r/n,則/r/n,所以/r/n在/r/n上單調(diào)遞增;/r/n②/r/n若/r/n,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞減,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞增/r/n./r/n綜上可得,/r/n時(shí),/r/n在/r/n上單調(diào)遞增;/r/n時(shí),函數(shù)的單調(diào)減區(qū)間為/r/n,單調(diào)增區(qū)間為/r/n./r/n(2)/r/n有/r/n2/r/n個(gè)不同零點(diǎn)/r/n有/r/n2/r/n個(gè)不同解/r/n有/r/n2/r/n個(gè)不同的解,/r/n令/r/n,則/r/n,/r/n記/r/n,/r/n記/r/n,/r/n又/r/n,所以/r/n時(shí),/r/n時(shí),/r/n,/r/n則/r/n在/r/n單調(diào)遞減,/r/n單調(diào)遞增,/r/n,/r/n./r/n即實(shí)數(shù)/r/n的取值范圍是/r/n./r/n(3)/r/n[/r/n方法/r/n一/r/n]/r/n【最優(yōu)解】:/r/n有/r/n2/r/n個(gè)不同零點(diǎn),則/r/n,故函數(shù)的零點(diǎn)一定為正數(shù)/r/n./r/n由/r/n(2)/r/n可知有/r/n2/r/n個(gè)不同零點(diǎn),/r/n記較大/r/n者為/r/n,較小者為/r/n,/r/n,/r/n注意到函數(shù)/r/n在區(qū)間/r/n上單調(diào)遞減,在區(qū)間/r/n上單調(diào)遞增,/r/n故/r/n,又由/r/n知/r/n,/r/n,/r/n要證/r/n,只需/r/n,/r/n且關(guān)于/r/n的函數(shù)/r/n在/r/n上單調(diào)遞增,/r/n所以/r/n只需證/r/n,/r/n只需證/r/n,/r/n只需證/r/n,/r/n,/r/n只需證/r/n在/r/n時(shí)為正,/r/n由于/r/n,故函數(shù)/r/n單調(diào)遞增,/r/n又/r/n,故/r/n在/r/n時(shí)為正,/r/n從而題中的不等式得證/r/n./r/n[/r/n方法二/r/n]/r/n:分析/r/n+/r/n放縮法/r/n有/r/n2/r/n個(gè)不同零點(diǎn)/r/n,不妨設(shè)/r/n,由/r/n得/r/n(其中/r/n)./r/n且/r/n./r/n要證/r/n,/r/n只需證/r/n,即證/r/n,/r/n只需證/r/n./r/n又/r/n,所以/r/n,即/r/n./r/n所以/r/n只需證/r/n.而/r/n,所以/r/n,/r/n又/r/n,所以/r/n只需證/r/n./r/n所以/r/n,原命題得證./r/n[/r/n方法三/r/n]/r/n:/r/n若/r/n且/r/n,則滿(mǎn)足/r/n且/r/n,由(/r/nⅡ/r/n)知/r/n有兩個(gè)零點(diǎn)/r/n且/r/n./r/n又/r/n,故進(jìn)一步有/r/n./r/n由/r/n可得/r/n且/r/n,從而/r/n../r/n因?yàn)?r/n,/r/n所以/r/n,/r/n故/r/n只需證/r/n./r/n又因?yàn)?r/n在區(qū)間/r/n內(nèi)單調(diào)遞增,故/r/n只需證/r/n,即/r/n,注意/r/n時(shí)有/r/n,故不等式成立./r/n2/r/n.(/r/n2021·/r/n天津/r/n·/r/n高考真題)已知/r/n,函數(shù)/r/n./r/n(/r/nI/r/n)求曲線(xiàn)/r/n在點(diǎn)/r/n處的切線(xiàn)方程:/r/n(/r/nII/r/n)證明/r/n存在唯一的極值點(diǎn)/r/n(/r/nIII/r/n)若存在/r/na/r/n,使得/r/n對(duì)任意/r/n成立,求實(shí)數(shù)/r/nb/r/n的取值范圍./r/n【詳解】/r/n(/r/nI/r/n)/r/n,則/r/n,/r/n又/r/n,則切線(xiàn)方程為/r/n;/r/n(/r/nII/r/n)令/r/n,則/r/n,/r/n令/r/n,則/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n單調(diào)遞減;當(dāng)/r/n時(shí),/r/n,/r/n單調(diào)遞增,/r/n當(dāng)/r/n時(shí),/r/n,/r/n,當(dāng)/r/n時(shí),/r/n,畫(huà)出/r/n大致圖像如下:/r/n所以當(dāng)/r/n時(shí),/r/n與/r/n僅有一個(gè)交點(diǎn),令/r/n,則/r/n,且/r/n,/r/n當(dāng)/r/n時(shí),/r/n,則/r/n,/r/n單調(diào)遞增,/r/n當(dāng)/r/n時(shí),/r/n,則/r/n,/r/n單調(diào)遞減,/r/n為/r/n的極大值點(diǎn),故/r/n存在唯一的極值點(diǎn);/r/n(/r/nIII/r/n)由(/r/nII/r/n)知/r/n,此時(shí)/r/n,/r/n所以/r/n,/r/n令/r/n,/r/n若存在/r/na/r/n,使得/r/n對(duì)任意/r/n成立,等價(jià)于存在/r/n,使得/r/n,即/r/n,/r/n,/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n單調(diào)遞減,當(dāng)/r/n時(shí),/r/n,/r/n單調(diào)遞增,/r/n所以/r/n,故/r/n,/r/n所以實(shí)數(shù)/r/nb/r/n的取值范圍/r/n./r/n3/r/n.(/r/n2021·/r/n北京/r/n·/r/n高考真題)已知函數(shù)/r/n./r/n(/r/n1/r/n)若/r/n,求曲線(xiàn)/r/n在點(diǎn)/r/n處的切線(xiàn)方程;/r/n(/r/n2/r/n)若/r/n在/r/n處取得極值,求/r/n的單調(diào)區(qū)間,以及其最大值與最小值./r/n【詳解】/r/n(/r/n1/r/n)當(dāng)/r/n時(shí),/r/n,則/r/n,/r/n,/r/n,/r/n此時(shí),曲線(xiàn)/r/n在點(diǎn)/r/n處的切線(xiàn)方程為/r/n,即/r/n;/r/n(/r/n2/r/n)因?yàn)?r/n,則/r/n,/r/n由題意可得/r/n,解得/r/n,/r/n故/r/n,/r/n,列表如下:/r/n增/r/n極大值/r/n減/r/n極小值/r/n增/r/n所以,函數(shù)/r/n的增區(qū)間為/r/n、/r/n,單調(diào)遞減區(qū)間為/r/n./r/n當(dāng)/r/n時(shí),/r/n;當(dāng)/r/n時(shí),/r/n./r/n所以,/r/n,/r/n./r/n4/r/n.(/r/n2021·/r/n全國(guó)/r/n·/r/n高考真題)已知函數(shù)/r/n./r/n(/r/n1/r/n)討論/r/n的單調(diào)性;/r/n(/r/n2/r/n)從下面兩個(gè)條件中選一個(gè),證明:/r/n只有一個(gè)零點(diǎn)/r/n①/r/n;/r/n②/r/n./r/n【詳解】/r/n(1)/r/n由函數(shù)的解析式可得:/r/n,/r/n當(dāng)/r/n時(shí),若/r/n,則/r/n單調(diào)遞減,/r/n若/r/n,則/r/n單調(diào)遞增;/r/n當(dāng)/r/n時(shí),若/r/n,則/r/n單調(diào)遞增,/r/n若/r/n,則/r/n單調(diào)遞減,/r/n若/r/n,則/r/n單調(diào)遞增;/r/n當(dāng)/r/n時(shí),/r/n在/r/n上單調(diào)遞增;/r/n當(dāng)/r/n時(shí),若/r/n,則/r/n單調(diào)遞增,/r/n若/r/n,則/r/n單調(diào)遞減,/r/n若/r/n,則/r/n單調(diào)遞增;/r/n(2)/r/n若選擇條件/r/n①/r/n:/r/n由于/r/n,故/r/n,則/r/n,/r/n而/r/n,/r/n而函數(shù)在區(qū)間/r/n上單調(diào)遞增,故函數(shù)在區(qū)間/r/n上有一個(gè)零點(diǎn)/r/n./r/n,/r/n由于/r/n,/r/n,故/r/n,/r/n結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間/r/n上沒(méi)有零點(diǎn)/r/n./r/n綜上可得,題中的結(jié)論成立/r/n./r/n若選擇條件/r/n②/r/n:/r/n由于/r/n,故/r/n,則/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n,/r/n而函數(shù)在區(qū)間/r/n上單調(diào)遞增,故函數(shù)在區(qū)間/r/n上有一個(gè)零點(diǎn)/r/n./r/n當(dāng)/r/n時(shí),構(gòu)造函數(shù)/r/n,則/r/n,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞減,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞增,/r/n注意到/r/n,故/r/n恒/r/n成立,從而有:/r/n,此時(shí):/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n取/r/n,則/r/n,/r/n即:/r/n,/r/n而函數(shù)在區(qū)間/r/n上單調(diào)遞增,故函數(shù)在區(qū)間/r/n上有一個(gè)零點(diǎn)/r/n./r/n,/r/n由于/r/n,/r/n,故/r/n,/r/n結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間/r/n上沒(méi)有零點(diǎn)/r/n./r/n綜上可得,題中的結(jié)論成立/r/n./r/n5/r/n.(/r/n2021·/r/n全國(guó)/r/n·/r/n高考真題)已知函數(shù)/r/n./r/n(/r/n1/r/n)討論/r/n的單調(diào)性;/r/n(/r/n2/r/n)設(shè)/r/n,/r/n為兩個(gè)不相等的正數(shù),且/r/n,證明:/r/n./r/n【詳解】/r/n(1)/r/n的定義域?yàn)?r/n./r/n由/r/n得,/r/n,/r/n當(dāng)/r/n時(shí),/r/n;當(dāng)/r/n時(shí)/r/n;當(dāng)/r/n時(shí),/r/n./r/n故/r/n在區(qū)間/r/n內(nèi)為增函數(shù),在區(qū)間/r/n內(nèi)為減函數(shù),/r/n(2)/r/n[/r/n方法/r/n一/r/n]/r/n:等價(jià)轉(zhuǎn)化/r/n由/r/n得/r/n,即/r/n./r/n由/r/n,得/r/n./r/n由(/r/n1/r/n)不妨設(shè)/r/n,則/r/n,從而/r/n,得/r/n,/r/n①/r/n令/r/n,/r/n/r/n則/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n在區(qū)間/r/n內(nèi)為減函數(shù),/r/n,/r/n從而/r/n,所以/r/n,/r/n由(/r/n1/r/n)得/r/n即/r/n./r/n①/r/n令/r/n,則/r/n,/r/n當(dāng)/r/n時(shí),/r/n,/r/n在區(qū)間/r/n內(nèi)為增函數(shù),/r/n,/r/n從而/r/n,所以/r/n./r/n又由/r/n,可得/r/n,/r/n所以/r/n./r/n②/r/n由/r/n①②/r/n得/r/n./r/n[/r/n方法二/r/n]/r/n【最優(yōu)解】:/r/n變形為/r/n,所以/r/n./r/n令/r/n.則上式變?yōu)?r/n,/r/n于是命題轉(zhuǎn)換為證明:/r/n./r/n令/r/n,則有/r/n,不妨設(shè)/r/n./r/n由(/r/n1/r/n)知/r/n,/r/n先證/r/n./r/n要證:/r/n./r/n令/r/n,/r/n則/r/n,/r/n在區(qū)間/r/n內(nèi)單調(diào)遞增,所以/r/n,即/r/n./r/n再證/r/n./r/n因?yàn)?r/n,所以/r/n./r/n令/r/n,/r/n所以/r/n,故/r/n在區(qū)間/r/n內(nèi)單調(diào)遞增./r/n所以/r/n.故/r/n,即/r/n./r/n綜合可知/r/n./r/n[/r/n方法三/r/n]/r/n:比值代換/r/n證明/r/n同證法/r/n2/r/n.以下證明/r/n./r/n不妨設(shè)/r/n,則/r/n,/r/n由/r/n得/r/n,/r/n,/r/n要證/r/n,/r/n只需證/r/n,兩邊取對(duì)數(shù)得/r/n,/r/n即/r/n,/r/n即證/r/n./r/n記/r/n,則/r/n./r/n記/r/n,則/r/n,/r/n所以,/r/n在區(qū)間/r/n內(nèi)單調(diào)遞減./r/n,則/r/n,/r/n所以/r/n在區(qū)間/r/n內(nèi)單調(diào)遞減./r/n由/r/n得/r/n,所以/r/n,/r/n即/r/n./r/n[/r/n方法四/r/n]/r/n:構(gòu)造函數(shù)法/r/n由已知得/r/n,令/r/n,/r/n不妨設(shè)/r/n,所以/r/n./r/n由(/r/nⅠ/r/n)知,/r/n,/r/n只需證/r/n./r/n證明/r/n同證法/r/n2/r/n./r/n再證明/r/n.令/r/n./r/n令/r/n,則/r/n./r/n所以/r/n,/r/n在區(qū)間/r/n內(nèi)單調(diào)遞增./r/n因?yàn)?r/n,所以/r/n,即/r/n又因?yàn)?r/n,所以/r/n,/r/n即/r/n./r/n因?yàn)?r/n,所以/r/n,即/r/n./r/n綜上,有/r/n結(jié)論得證./r/n押題沖關(guān)/r/n1/r/n.(/r/n2022·/r/n天津/r/n·/r/n一/r/n模)已知函數(shù)/r/n,/r/n./r/n(1)/r/n若曲線(xiàn)/r/n在點(diǎn)/r/n處的切線(xiàn)的斜率為/r/n4/r/n,求/r/na/r/n的值;/r/n(2)/r/n當(dāng)/r/n時(shí),求/r/n的單調(diào)區(qū)間;/r/n(3)/r/n已知/r/n的導(dǎo)函數(shù)在區(qū)間/r/n上存在零點(diǎn)/r/n./r/n求證:當(dāng)/r/n時(shí),/r/n./r/n【解析】/r/n(1)/r/n函數(shù)/r/n的定義域?yàn)?r/n,/r/n由/r/n,可得/r/n,/r/n∴/r/n,/r/n所以/r/n./r/n(2)/r/n由(/r/n1/r/n)得/r/n,/r/n,/r/n①/r/n當(dāng)/r/n時(shí),令/r/n,解得/r/n或/r/n,/r/n令/r/n,解得/r/n./r/n所以,函數(shù)/r/n的單調(diào)遞增區(qū)間為/r/n和/r/n,單調(diào)遞減區(qū)間為/r/n./r/n②/r/n當(dāng)/r/n時(shí),/r/n,所以,函數(shù)/r/n的單調(diào)遞增區(qū)間為/r/n,/r/n③/r/n當(dāng)/r/n時(shí),令/r/n,解得/r/n或/r/n,/r/n令/r/n,解得/r/n,/r/n所以,函數(shù)/r/n的單調(diào)遞增區(qū)間為/r/n和/r/n,單調(diào)遞減區(qū)間為/r/n./r/n(3)/r/n因?yàn)閷?dǎo)函數(shù)/r/n在區(qū)間/r/n上存在零點(diǎn),則/r/n,/r/n由(/r/n2/r/n)可知/r/n在/r/n上單調(diào)遞減,在/r/n單調(diào)遞增,/r/n所以/r/n在/r/n上的最小值為/r/n,/r/n設(shè)/r/n,/r/n,/r/n,/r/n令/r/n,因?yàn)?r/n,/r/n所以,/r/n在/r/n上單調(diào)遞減,/r/n又/r/n,所以/r/n在/r/n上單調(diào)遞減,/r/n又因?yàn)?r/n,/r/n所以/r/n,即/r/n,/r/n所以當(dāng)/r/n時(shí),/r/n./r/n2/r/n.(/r/n2022·/r/n福建/r/n·/r/n模擬預(yù)測(cè))已知函數(shù)/r/n./r/n(1)/r/n當(dāng)/r/n時(shí),求函數(shù)/r/n的極值;/r/n(2)/r/n若曲線(xiàn)/r/n有/r/n,/r/n兩個(gè)零點(diǎn)/r/n./r/n(/r/ni/r/n)求/r/n的取值范圍;/r/n(/r/nii/r/n)證明:存在一組/r/n,/r/n(/r/n),使得/r/n的定義域和值域均為/r/n./r/n【解析】/r/n(1)/r/n函數(shù)定義域是/r/n,/r/n當(dāng)/r/n時(shí),/r/n,則,令,解得/r/n,/r/n列表可知/r/n1/r/n+/r/n0/r/n-/r/n單調(diào)遞增/r/n1/r/n單調(diào)遞減/r/n的極大值為/r/n,無(wú)極小值;/r/n(2)/r/n(/r/ni/r/n)解:由題意可知,/r/n有兩解,即/r/n有兩解,/r/n設(shè)/r/n,則,令,解得/r/n(/r/n舍去),/r/n列表可知,/r/n+/r/n0/r/n-/r/n單調(diào)遞增/r/n極大值/r/n單調(diào)遞減/r/n,/r/n因?yàn)?r/n有兩個(gè)零點(diǎn),所以/r/n,解得/r/n,/r/n當(dāng)/r/n時(shí),有/r/n,可得/r/n,/r/n令/r/n,有,/r/n時(shí),/r/n./r/n時(shí),/r/n,可得函數(shù)/r/n的減區(qū)間為/r/n,增區(qū)間為/r/n,/r/n有/r/n,可得/r/n,/r/n當(dāng)/r/n時(shí),/r/n./r/n所以存在/r/n,/r/n,使得/r/n,所以/r/n;/r/n(/r/nii/r/n)證明:因?yàn)?r/n,令,解得/r/n,/r/n列表可知,/r/n+/r/n0/r/n-/r/n單調(diào)遞增/r/n極大值/r/n單調(diào)遞減/r/n在/r/n上單調(diào)遞增,在/r/n上單調(diào)遞減,/r/n①/r/n若/r/n,則/r/n在/r/n上單調(diào)遞增,因此/r/n,/r/n,由上可/r/n知取/r/n,/r/n,此時(shí)/r/n,/r/n,所以當(dāng)/r/n時(shí),存在一組/r/n,/r/n符合題意;/r/n②/r/n若/r/n,則/r/n在/r/n上單調(diào)遞減,所以/r/n,/r/n,/r/n所以/r/n,即/r/n,不符題意;/r/n③/r/n若/r/n,/r/n/r/n在/r/n上單調(diào)遞增,在/r/n上單調(diào)遞減,/r/n所以/r/n,由/r/n得/r/n,/r/n又因?yàn)?r/n,所以/r/n,/r/n即/r/n,/r/n,所以當(dāng)/r/n時(shí),存在一組/r/n,/r/n符合題意;/r/n綜上,存在一組/r/n,/r/n符合題意/r/n./r/n3/r/n.(/r/n2022·/r/n湖南/r/n·/r/n雅禮中學(xué)二模)已知函數(shù)/r/n,且正數(shù)/r/na/r/n,/r/nb/r/n滿(mǎn)足/r/n(1)/r/n討論/r/nf/r/n(/r/nx/r/n)的單調(diào)性;/r/n(2)/r/n若/r/n的零點(diǎn)為/r/n,/r/n,且/r/nm/r/n,/r/nn/r/n滿(mǎn)足/r/n,求證:/r/n./r/n(/r/n其中/r/n……/r/n是自然對(duì)數(shù)的底數(shù))/r/n【解析】/r/n(1)/r/n令/r/n,則由題可知/r/n,/r/n即/r/n,所以/r/n,即/r/n,/r/n因?yàn)?r/n/r/n,/r/n令/r/n,則/r/n,且對(duì)稱(chēng)軸/r/n,/r/n,易得當(dāng)/r/n時(shí),/r/n在/r/n單調(diào)遞減,在/r/n單調(diào)遞增,/r/n當(dāng)/r/n時(shí),/r/n在/r/n單調(diào)遞減;/r/n(2)/r/n,/r/n由/r/n且/r/n知/r/n在/r/n單調(diào)遞增,在/r/n單調(diào)遞減,/r/n又/r/n,令/r/n,則/r/n,即/r/n,/r/n由(/r/n1/r/n)知/r/n,/r/n,/r/n即有/r/n,/r/n,/r/n兩式相減得/r/n,/r/n即/r/n,整理得/r/n./r/n4/r/n.(/r/n2022·/r/n重慶八中模擬預(yù)測(cè))已知函數(shù)/r/n./r/n(1)/r/n若/r/n在/r/n單調(diào)遞增,求/r/na/r/n的取值范圍/r/n./r/n(2)/r/n若/r/n,且/r/n,求/r/na/r/n./r/n【解析】/r/n(1)/r/n解:因?yàn)?r/n定義域?yàn)?r/n,/r/n若/r/n時(shí)/r/n,所以/r/n在/r/n單調(diào)遞增,滿(mǎn)足條件;/r/n若/r/n時(shí),令/r/n,則/r/n,所以當(dāng)/r/n時(shí)/r/n,即/r/n在/r/n上單調(diào)遞增,又/r/n,/r/n,/r/n所以/r/n,當(dāng)/r/n時(shí)/r/n,即/r/n,所以/r/n在/r/n上單調(diào)遞減,/r/n當(dāng)/r/n時(shí)/r/n,即/r/n,所以/r/n在/r/n上單調(diào)遞增,不符合題意,/r/n綜上可得/r/n(2)/r/n解:若/r/n,由(/r/n1/r/n)可知/r/n,/r/n在/r/n上單調(diào)遞減,在/r/n上單調(diào)遞增,且/r/n,所以/r/n的最小值為/r/n,/r/n令/r/n,則/r/n,/r/n所以當(dāng)/r/n時(shí)/r/n,當(dāng)/r/n時(shí)/r/n,/r/n故/r/n在/r/n上單調(diào)遞增,在/r/n上單調(diào)遞減,所以/r/n,/r/n由/r/n,所以當(dāng)且僅當(dāng)/r/n,即/r/n時(shí)條件成立,所以/r/n5/r/n.(/r/n2022·/r/n江蘇/r/n·/r/n南京市第一中學(xué)三模)已知函數(shù)/r/n./r/n(1)/r/n證明:/r/n;/r/n(2)/r/n若/r/n,證明:/r/n./r/n【解析】/r/n(1)/r/n解:因?yàn)?r/n,/r/n所以/r/n,/r/n所以函數(shù)/r/n在/r/n上單調(diào)遞減,/r/n所以/r/n,即/r/n./r/n(2)/r/n解:由(/r/n1/r/n)/r/n知/r/n,故/r/n,/r/n所以/r/n,/r/n所以,令/r/n,則/r/n,/r/n下面用數(shù)學(xué)歸納法證明/r/n./r/n①/r/n當(dāng)/r/n時(shí),/r/n,故成立;/r/n②/r/n假設(shè)/r/n時(shí),/r/n,/r/n即/r/n成立,/r/n當(dāng)/r/n時(shí),/r/n,/r/n由于/r/n所以,當(dāng)/r/n時(shí),不等式成立/r/n./r/n綜上/r/n①②/r/n,不等式/r/n成立/r/n./r/n考前預(yù)測(cè)/r/n(/r/n限時(shí)/r/n:/r/n30/r/n分鐘)/r/n1/r/n.記/r/n,/r/n為/r/n的導(dǎo)函數(shù).若對(duì)/r/n,/r/n,則稱(chēng)函數(shù)/r/n為/r/n上的/r/n“/r/n凸函數(shù)/r/n”/r/n.已知函數(shù)/r/n,/r/n./r/n(/r/n1/r/n)若函數(shù)/r/n為/r/n上的凸函數(shù),求/r/n的取值范圍;/r/n(/r/n2/r/n)若函數(shù)/r/n在/r/n上有極值,求/r/n的取值范圍./r/n【詳解】/r/n(/r/n1/r/n)/r/n,/r/n若函數(shù)/r/n為/r/n上的凸函數(shù),則/r/n,即/r/n,/r/n令/r/n,/r/n,則當(dāng)/r/n時(shí),/r/n,/r/n當(dāng)/r/n時(shí),/r/n;當(dāng)/r/n時(shí),/r/n;/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞減;當(dāng)/r/n時(shí),/r/n單調(diào)遞增,/r/n,/r/n,解得:/r/n,/r/n的取值范圍為/r/n./r/n(/r/n2/r/n)/r/n,/r/n,/r/n在/r/n上有極值,/r/n在/r/n有變號(hào)零點(diǎn),/r/n,令/r/n,則/r/n,/r/n,/r/n,/r/n在/r/n上單調(diào)遞增,/r/n;/r/n①/r/n當(dāng)/r/n,即/r/n時(shí),/r/n,/r/n在/r/n上單調(diào)遞增,/r/n.即/r/n,/r/n在/r/n無(wú)零點(diǎn),不合題意;/r/n②/r/n當(dāng)/r/n,即/r/n時(shí),則/r/n,使得/r/n,/r/n當(dāng)/r/n時(shí),,/r/n,/r/n單調(diào)遞減,/r/n又/r/n,當(dāng)/r/n時(shí),/r/n,/r/n在/r/n上無(wú)零點(diǎn);/r/n當(dāng)/r/n時(shí),/r/n,/r/n單調(diào)遞增,/r/n又/r/n時(shí),/r/n,/r/n在/r/n上有零點(diǎn),且在零點(diǎn)左右兩側(cè)/r/n符號(hào)相反,即該零點(diǎn)為/r/n的變號(hào)零點(diǎn)/r/n,/r/n在/r/n上有極值;/r/n綜上所述:/r/n的取值范圍為/r/n./r/n2/r/n.已知函數(shù)/r/n./r/n(/r/n1/r/n)當(dāng)/r/n時(shí),求曲線(xiàn)/r/n在點(diǎn)/r/n處的切線(xiàn)方程;/r/n(/r/n2/r/n)求函數(shù)/r/n在/r/n的最小值/r/n./r/n【詳解】/r/n解:(/r/n1/r/n)當(dāng)/r/n時(shí),/r/n,/r/n∴/r/n,/r/n又/r/n得切點(diǎn)/r/n,/r/n∴/r/n,/r/n所以切線(xiàn)方程為/r/n,即/r/n;/r/n(/r/n2/r/n)/r/n,/r/n∴/r/n,/r/n令/r/n,/r/n∴/r/n由/r/n,得/r/n,所以/r/n在/r/n上為單調(diào)增函數(shù)/r/n又/r/n,/r/n所以/r/n在/r/n上恒成立/r/n即/r/n在/r/n恒/r/n成立/r/n當(dāng)/r/n時(shí),/r/n,知/r/n在/r/n上為減函數(shù),從而/r/n當(dāng)/r/n時(shí),/r/n,知/r/n在/r/n上為增函數(shù),從而/r/n;/r/n綜上,當(dāng)/r/n時(shí),/r/n;當(dāng)/r/n時(shí)/r/n./r/n3/r/n.已知函數(shù)/r/n(/r/n1/r/n)當(dāng)/r/n時(shí),求在/r/n處的切線(xiàn)方程;/r/n(/r/n2/r/n)若/r/n在定義域上存在極大值,求實(shí)數(shù)/r/n的取值范圍/r/n./r/n【詳解】/r/n解:(/r/n1/r/n)/r/n時(shí),/r/n定義域是/r/n,/r/n(/r/n)/r/n所以/r/n,/r/n,切線(xiàn)方程為/r/n即/r/n(/r/n2/r/n)/r/n的定義域是/r/n,求導(dǎo)得/r/n(/r/n)/r/n記/r/n,/r/n①/r/n當(dāng)/r/n時(shí),令/r/n,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞減,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞增;/r/n有極小值沒(méi)有極大值/r/n./r/n②/r/n當(dāng)/r/n時(shí),/r/n,/r/n(/r/n負(fù)根舍去/r/n)/r/n,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞減,/r/n當(dāng)/r/n時(shí),/r/n單調(diào)遞增;/r/n有極小值沒(méi)有極大值/r/n./r/n③/r/n當(dāng)/r/n時(shí),令/r/n得/r/n,則/r/n在/r/n恒/r/n成立,/r/n于是/r/n在/r/n恒/r/n成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)門(mén)衛(wèi)招聘流程
- 辦公室設(shè)計(jì)施工一體化合同范本
- 網(wǎng)絡(luò)安全招投標(biāo)投訴處理規(guī)范
- 石材加工招投標(biāo)監(jiān)督技巧
- 內(nèi)部通訊稿收發(fā)規(guī)定
- 船只租賃終止協(xié)議范本
- 礦區(qū)安全圍墻施工合同
- 養(yǎng)老機(jī)構(gòu)財(cái)務(wù)危機(jī)應(yīng)對(duì)策略
- 建筑行業(yè)貨款回收措施
- 電力工程安全生產(chǎn)培訓(xùn)管理辦法
- 《部門(mén)介紹模板》課件
- 如何審查合同的培訓(xùn)課件
- 船舶消防安全知識(shí)
- 2024下半年江蘇蘇州城市學(xué)院招聘管理崗位工作人員27人歷年高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 金屬?gòu)U料再利用技術(shù)介紹
- 風(fēng)險(xiǎn)投資在我國(guó)的發(fā)展課件
- 小學(xué)四年級(jí)數(shù)學(xué)面積應(yīng)用題及圖形面積題
- 國(guó)際經(jīng)濟(jì)與貿(mào)易職業(yè)規(guī)劃報(bào)告
- 沙畫(huà)手工課件
- 讀書(shū)好書(shū)開(kāi)啟智慧之門(mén)
- 餐飲業(yè)掛靠合作協(xié)議范文
評(píng)論
0/150
提交評(píng)論