版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.2.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.3.函數(shù)的值域為()A. B. C. D.4.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.5.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.6.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.7.國家統(tǒng)計局服務業(yè)調查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經理指數(shù)(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%8.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.如圖,設為內一點,且,則與的面積之比為A. B.C. D.10.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.11.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數(shù)的取值為A.或11 B.或11 C. D.12.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(1,2),=(-3,1),則=______.14.在平面直角坐標系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.15.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳習近平新時代中國特色社會主義思想為主要內容,立足全體黨員、面向全社會的優(yōu)質平臺,現(xiàn)已日益成為老百姓了解國家動態(tài),緊跟時代脈搏的熱門app.該款軟件主要設有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰(zhàn)答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.16.設,滿足約束條件,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.19.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.21.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.2.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.3.A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.4.D【解析】
易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.5.C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.6.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.7.D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎題.8.A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點轉化為與在(2,4]上有交點,利用導數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學轉化思想方法與數(shù)形結合的解題思想方法,訓練了利用導數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.9.A【解析】
作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.10.A【解析】
將已知條件轉化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.11.A【解析】
圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.12.D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-6【解析】
由可求,然后根據(jù)向量數(shù)量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數(shù)量積的坐標表示,屬于基礎試題.14.【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關系,考查了運算能力,屬于基礎題.15.【解析】
先分間隔一個與不間隔分類計數(shù),再根據(jù)捆綁法求排列數(shù),最后求和得結果.【詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:【點睛】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎題.16.29【解析】
由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數(shù)列.(3)由(2)可得.18.(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設等比數(shù)列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數(shù)列的通項公式和前n項和的關系,等差數(shù)列,等比數(shù)列的定義和性質以及數(shù)列放縮的方法,還考查了轉化化歸的思想和運算求解的能力,屬于難題,19.(1)(2)見解析【解析】
(1)直接求出直線方程,與橢圓方程聯(lián)立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯(lián)立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯(lián)立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.20.(1);(2)最小值為,此時【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標和直角坐標相互轉化公式,求得曲線的直角坐標方程.(2)設出的坐標,結合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,,是最小值,此時,所以,所求最小值為,此時【點睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標方程轉化為直角坐標方程,考查利用圓錐曲線的參數(shù)求最值,屬于中檔題.21.(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點,連接,根據(jù)條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,不妨設,則,,,,,,,,.設平面的法向量為,則,即,令,得.設平面的法向量為,則,即,令,得.從而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標文件響應的詳細步驟
- 農村五保供養(yǎng)合同
- 哺乳期保暖內衣采購供應合同
- 股份公司董事服務合同范例
- 煤礦安全避險自救與逃生技巧
- 英文飛機采購合同條款
- 廣告公司戰(zhàn)略合作合同
- 紡織品進口采購協(xié)議
- 保密協(xié)議合同的爭議解決
- 小額借款合同模板樣式
- 定向鉆施工技術交底記錄
- 新能源發(fā)電技術概述課件
- 遼寧省葫蘆島市綏中縣遼師大版四年級上冊期中階段檢測英語試卷(原卷版)
- 邏輯思維訓練第三章命題
- 加油站設備及工藝管線安裝工程施工方案
- 升維:不確定時代的決策博弈
- 2023北京通州區(qū)初二上期末考生物試卷及答案
- 《西式面點實訓》課程標準
- 《旅游職業(yè)禮儀與交往》課程標準
- 咖啡學概論智慧樹知到答案章節(jié)測試2023年華南理工大學
- 造價咨詢公司組織機構及人員崗位職責
評論
0/150
提交評論