北京市延慶2022年中考數(shù)學模擬精編試卷含解析及點睛_第1頁
北京市延慶2022年中考數(shù)學模擬精編試卷含解析及點睛_第2頁
北京市延慶2022年中考數(shù)學模擬精編試卷含解析及點睛_第3頁
北京市延慶2022年中考數(shù)學模擬精編試卷含解析及點睛_第4頁
北京市延慶2022年中考數(shù)學模擬精編試卷含解析及點睛_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一次函數(shù)與的圖象如圖所示,給出下列結論:①;②;③當時,.其中正確的有()A.0個 B.1個 C.2個 D.3個2.下列計算正確的是()A. B.0.00002=2×105C. D.3.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班9名學生進行了調(diào)查,有關數(shù)據(jù)如下表.則這9名學生每周做家務勞動的時間的眾數(shù)及中位數(shù)分別是()每周做家務的時間(小時)01234人數(shù)(人)22311A.3,2.5 B.1,2 C.3,3 D.2,24.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤25.將1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是()A. B.6 C. D.6.在平面直角坐標系xOy中,若點P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>57.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個8.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A,B,C,D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為()A. B. C. D.9.tan60°的值是()A. B. C. D.10.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.12.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.13.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.14.若代數(shù)式有意義,則x的取值范圍是__.15.如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,將△ABC折疊,使點B恰好落在邊AC上,與點B′重合,AE為折痕,則EB′=_______.16.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是.17.因式分解:x2﹣3x+(x﹣3)=_____.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標系中,拋物線經(jīng)過點A(-1,0)和點B(4,5).(1)求該拋物線的函數(shù)表達式.(2)求直線AB關于x軸對稱的直線的函數(shù)表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.19.(5分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.20.(8分)解方程組:.21.(10分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經(jīng)過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.22.(10分)數(shù)學不僅是一門學科,也是一種文化,即數(shù)學文化.數(shù)學文化包括數(shù)學史、數(shù)學美和數(shù)學應用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、?!ぁぁぁぁぁひ恢坏降诟?”“你真傻!就要這么一點米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學們閱讀以下解答過程就知道答案了.設,則即:事實上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機中的計算器進行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學到的方法解決以下問題:我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學“數(shù)學社團”開發(fā)了一款應用軟件,推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.23.(12分)計算:+()-2-8sin60°24.(14分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

仔細觀察圖象,①k的正負看函數(shù)圖象從左向右成何趨勢即可;②a,b看y2=x+a,y1=kx+b與y軸的交點坐標;③看兩函數(shù)圖象的交點橫坐標;④以兩條直線的交點為分界,哪個函數(shù)圖象在上面,則哪個函數(shù)值大.【詳解】①∵y1=kx+b的圖象從左向右呈下降趨勢,

∴k<0正確;

②∵y2=x+a,與y軸的交點在負半軸上,

∴a<0,故②錯誤;

③當x<3時,y1>y2錯誤;

故正確的判斷是①.

故選B.【點睛】本題考查一次函數(shù)性質(zhì)的應用.正確理解一次函數(shù)的解析式:y=kx+b(k≠0)y隨x的變化趨勢:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.2、D【解析】

在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統(tǒng)一為乘法運算,如果有乘方,還應根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.3、D【解析】試題解析:表中數(shù)據(jù)為從小到大排列.數(shù)據(jù)1小時出現(xiàn)了三次最多為眾數(shù);1處在第5位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選D.考點:1.眾數(shù);1.中位數(shù).4、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D5、B【解析】

根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】第一排1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,由此可知:(1,5)表示第1排從左向右第5個數(shù)是,(13,1)表示第13排從左向右第1個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,第13排是奇數(shù)排,最中間的也就是這排的第7個數(shù)是1,那么第1個就是,則(1,5)與(13,1)表示的兩數(shù)之積是1.故選B.6、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.7、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.8、B【解析】試題解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的對角線把矩形分成了四個面積相等的三角形,∴陰影部分的面積=扇形AOD的面積+扇形BOC的面積=2扇形BOC的面積==10π.故選B.9、A【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】tan60°=故選:A.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關鍵.10、C【解析】

左視圖就是從物體的左邊往右邊看.小正方形應該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應該是大正方形,故D錯誤,所以C正確.故此題選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.12、1【解析】

根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關鍵.13、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質(zhì)中的對稱軸公式;也可用配方法解決.14、x3【解析】

由代數(shù)式有意義,得

x-30,

解得x3,

故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.15、1.5【解析】在Rt△ABC中,,∵將△ABC折疊得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.設B′E=BE=x,則CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.16、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

∴BF=EF=

,

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

,

又∵PB=

,

∴BE=

,

∵△APD≌△AEB,

∴PD=BE=

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質(zhì)的運用、正方形的性質(zhì)的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.17、(x-3)(x+1);【解析】根據(jù)因式分解的概念和步驟,可先把原式化簡,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前兩項提公因式,然后再把x-3看做整體提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案為(x﹣3)(x+1).點睛:此題主要考查了因式分解,關鍵是明確因式分解是把一個多項式化為幾個因式積的形式.再利用因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),進行分解因式即可.三、解答題(共7小題,滿分69分)18、(1)(2)(3)【解析】

(1)根據(jù)待定系數(shù)法,可得二次函數(shù)的解析式;(2)根據(jù)待定系數(shù)法,可得AB的解析式,根據(jù)關于x軸對稱的橫坐標相等,縱坐標互為相反數(shù),可得答案;(3)根據(jù)PM<PN,可得不等式,利用絕對值的性質(zhì)化簡解不等式,可得答案.【詳解】(1)將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,拋物線的解析式為y=x2﹣2x﹣3;(2)設AB的解析式為y=kx+b,將A(﹣1,1),B(2,5)代入函數(shù)解析式,得:,解得:,直線AB的解析式為y=x+1,直線AB關于x軸的對稱直線的表達式y(tǒng)=﹣(x+1),化簡,得:y=﹣x﹣1;(3)設M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.故當PM<PN時,求點P的橫坐標xP的取值范圍是2<xP<2.【點睛】本題考查了二次函數(shù)綜合題.解(1)的關鍵是待定系數(shù)法,解(2)的關鍵是利用關于x軸對稱的橫坐標相等,縱坐標互為相反數(shù);解(3)的關鍵是利用絕對值的性質(zhì)化簡解不等式.19、(1)作圖見解析;(2)證明見解析.【解析】

(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;

(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關鍵.20、;;.【解析】分析:把原方程組中的第二個方程通過分解因式降次,轉(zhuǎn)化為兩個一次方程,再分別和第一方程組合成兩個新的方程組,分別解這兩個新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉(zhuǎn)化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點睛:本題考查的是二元二次方程組的解法,解題的要點有兩點:(1)把原方程組中的第2個方程通過分解因式降次轉(zhuǎn)化為兩個二元一次方程,并分別和第1個方程組合成兩個新的方程組;(2)將兩個新的方程組消去y,即可得到關于x的一元二次方程.21、;.【解析】

(1)由正方形的性質(zhì)可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.【點睛】二次函數(shù)的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉(zhuǎn)化成兩個三角形.22、(1)3;(2);(3)【解析】

設塔的頂層共有盞燈,根據(jù)題意列出方程,進行解答即可.參照題目中的解題方法進行計算即可.由題意求得數(shù)列的每一項,及前n項和Sn=2n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論