2022年四川省成都市成華區(qū)十校聯(lián)考最后數(shù)學試題含解析及點睛_第1頁
2022年四川省成都市成華區(qū)十校聯(lián)考最后數(shù)學試題含解析及點睛_第2頁
2022年四川省成都市成華區(qū)十校聯(lián)考最后數(shù)學試題含解析及點睛_第3頁
2022年四川省成都市成華區(qū)十校聯(lián)考最后數(shù)學試題含解析及點睛_第4頁
2022年四川省成都市成華區(qū)十校聯(lián)考最后數(shù)學試題含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.上周周末放學,小華的媽媽來學校門口接他回家,小華離開教室后不遠便發(fā)現(xiàn)把文具盒遺忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并與班主任交流了一下周末計劃才離開,為了不讓媽媽久等,小華快步跑到學校門口,則小華離學校門口的距離y與時間t之間的函數(shù)關系的大致圖象是()A. B. C. D.2.計算-3-1的結果是()A.2B.-2C.4D.-43.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.224.關于x的方程3x+2a=x﹣5的解是負數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣5.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)6.撫順市中小學機器人科技大賽中,有7名學生參加決賽,他們決賽的成績各不相同,其中一名參賽選手想知道自己能否進入前4名,他除了知道自己成績外還要知道這7名學生成績的()A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差7.如圖,嘉淇同學拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元8.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>29.若關于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣10.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.511.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.12.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣16二、填空題:(本大題共6個小題,每小題4分,共24分.)13.三個小伙伴各出資a元,共同購買了價格為b元的一個籃球,還剩下一點錢,則剩余金額為__元(用含a、b的代數(shù)式表示)14.為了了解某班數(shù)學成績情況,抽樣調(diào)查了13份試卷成績,結果如下:3個140分,4個135分,2個130分,2個120分,1個100分,1個80分.則這組數(shù)據(jù)的中位數(shù)為______分.15.一組“數(shù)值轉換機”按下面的程序計算,如果輸入的數(shù)是36,則輸出的結果為106,要使輸出的結果為127,則輸入的最小正整數(shù)是__________.16.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.17.如圖,BC=6,點A為平面上一動點,且∠BAC=60°,點O為△ABC的外心,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點P,則OP的最小值是_____18.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,點B′和B分別對應).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某商場銷售一批名牌襯衫,平均每天可以銷售20件,每件盈利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價1元,商場平均每天多售出2件,若商場平均每天要盈利1200元,每件襯衫應降價多少元?20.(6分)已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點A(3,n).(1)求實數(shù)a的值;(2)設一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,若點C在y軸上,且S△ABC=2S△AOB,求點C的坐標.21.(6分)如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,BC=6,ADBD=222.(8分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.23.(8分)計算:﹣(﹣2)2+|﹣3|﹣20180×24.(10分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.25.(10分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).26.(12分)如圖,直角坐標系中,直線與反比例函數(shù)的圖象交于A,B兩點,已知A點的縱坐標是2.(1)求反比例函數(shù)的解析式.(2)將直線沿x軸向右平移6個單位后,與反比例函數(shù)在第二象限內(nèi)交于點C.動點P在y軸正半軸上運動,當線段PA與線段PC之差達到最大時,求點P的坐標.27.(12分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:根據(jù)題意出教室,離門口近,返回教室離門口遠,在教室內(nèi)距離不變,速快跑距離變化快,可得答案.詳解:根據(jù)題意得,函數(shù)圖象是距離先變短,再變長,在教室內(nèi)沒變化,最后迅速變短,B符合題意;

故選B.點睛:本題考查了函數(shù)圖象,根據(jù)距離的變化描述函數(shù)是解題關鍵.2、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.3、A【解析】

如圖,運用矩形的性質(zhì)首先證明CN=3,∠C=90°;運用翻折變換的性質(zhì)證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點睛】該題主要考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識點來分析、判斷、推理或解答.4、D【解析】

先解方程求出x,再根據(jù)解是負數(shù)得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數(shù),所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數(shù)時,不等號方向要改變.5、A【解析】

分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.6、A【解析】

7人成績的中位數(shù)是第4名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有7個人,且他們的分數(shù)互不相同,第4的成績是中位數(shù),要判斷是否進入前4名,故應知道中位數(shù)的多少,故選A.【點睛】本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義,熟練掌握相關的定義是解題的關鍵.7、A【解析】

可設1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據(jù)等量關系列出方程組,再求解即可.【詳解】設1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【點睛】本題考查了二元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系設出未知數(shù),列出方程組.8、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.9、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.10、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.11、A【解析】

利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.12、B【解析】

先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數(shù)冪的乘法及除法運算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3a﹣b)【解析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點睛:本題考查列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.14、1【解析】

∵13份試卷成績,結果如下:3個140分,4個1分,2個130分,2個120分,1個100分,1個80分,∴第7個數(shù)是1分,∴中位數(shù)為1分,故答案為1.15、15【解析】

分析:設輸出結果為y,觀察圖形我們可以得出x和y的關系式為:,將y的值代入即可求得x的值.詳解:∵當y=127時,解得:x=43;當y=43時,解得:x=15;當y=15時,解得不符合條件.則輸入的最小正整數(shù)是15.故答案為15.點睛:考查一元一次方程的應用,熟練掌握一元一次方程的應用是解題的關鍵.16、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關鍵.17、【解析】試題分析:如圖,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴點P在以BC為直徑的圓上,∵外心為O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案為.考點:1.三角形的外接圓與外心;2.全等三角形的判定與性質(zhì).18、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=故答案為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、每件襯衫應降價1元.【解析】

利用襯衣平均每天售出的件數(shù)×每件盈利=每天銷售這種襯衣利潤列出方程解答即可.【詳解】解:設每件襯衫應降價x元.根據(jù)題意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“擴大銷售量,減少庫存”,∴x1=10應舍去,∴x=1.答:每件襯衫應降價1元.【點睛】此題主要考查了一元二次方程的應用,利用基本數(shù)量關系:平均每天售出的件數(shù)×每件盈利=每天銷售的利潤是解題關鍵.20、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】

(1)把A(3,n)代入y=(x>0)求得n的值,即可得A點坐標,再把A點坐標代入一次函數(shù)y=ax﹣2可得a的值;(2)先求出一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交點B的坐標,再分兩種情況(①當C點在y軸的正半軸上或原點時;②當C點在y軸的負半軸上時)求點C的坐標即可.【詳解】(1)∵函數(shù)y=(x>0)的圖象過(3,n),∴3n=3,n=1,∴A(3,1)∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,∴B(0,﹣2),①當C點在y軸的正半軸上或原點時,設C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②當C點在y軸的負半軸上時,設(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【點睛】本題主要考查了一次函數(shù)與反比例函數(shù)交點問題,解決第(2)問時要注意分類討論,不要漏解.21、(1)證明見解析;(2)BE=5【解析】試題分析:連接OD.根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線.(2)根據(jù)已知條件得到△CDA∽△CBD由相似三角形的性質(zhì)得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直徑,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半徑,∴CD是⊙O的切線;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,CD∵ADBD=2∵CE,BE是⊙O的切線,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.22、BD=2.【解析】

試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關鍵.23、﹣1【解析】

根據(jù)乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)及立方根的定義依次計算各項后,再根據(jù)有理數(shù)的運算法則進行計算即可.【詳解】原式=﹣1+3﹣1×3=﹣1.【點睛】本題考查了乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運算,熟知乘方的意義、絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、立方根的定義及有理數(shù)的混合運算順序是解決問題的關鍵.24、(1)見解析;(2)70°;(3)1.【解析】

(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.25、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.26、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論