2022-2023高三上期中 海淀高三數(shù)學(xué)期中練習(xí)參考答案_第1頁
2022-2023高三上期中 海淀高三數(shù)學(xué)期中練習(xí)參考答案_第2頁
2022-2023高三上期中 海淀高三數(shù)學(xué)期中練習(xí)參考答案_第3頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第第6頁(共6頁)海淀區(qū)2022—2023學(xué)年第一學(xué)期期中練習(xí)高三數(shù)學(xué)參考答案一、選擇題題目題目12345678910答案BACBADBCAD(1,(1,)5(11)5

(12)(0,1)

1的實(shí)數(shù)均可(14)21三、解答題

(15)2;(0,2)16(本小題13分)(Ⅰ)設(shè)等差數(shù)列a}的公差為d,因?yàn)閍2

3,S5

n25,ad3,所以1 545a d25. 1 2解得a1,解得1d2.所以an

2n1.(Ⅱ)選擇條件③.因?yàn)閎1

1,q3,所以bn

3n1.因?yàn)閍m

b,k即2m1.得m3k11.2因?yàn)閗N*1為偶數(shù),所以mN*.可得m3k11.217(本小題14分)2解(Ⅰ)f()2sin()cos()2cos()14 4 4 422(

2) 2( 2)211.

2 2 2(Ⅱ)f(x)sin2xcos2x 2sin(2x).4所以f(x)的最小正周期為T2.2(Ⅲ)因?yàn)?x, 所以2x5,2 4 4 4當(dāng)2xxf(x取得最大值,4 2 82所以f(x)在區(qū)間[0,]上的最大值為f() ;22 82x5xf(x取得最小值,4 4 2所以f(x)在區(qū)間[0,]上的最小值為f()1.2 218(本小題14分)(Ⅰ)f(x)的定義域?yàn)镽.f'(xx22xf'(x0x1

0,x2

2.xxf'(x)f(x)(,0)+00(0,2)(2,+極大值20極小值由表可得,f(x)的單調(diào)遞增區(qū)間為(,0),(2,);單調(diào)遞減區(qū)間為(0,2).(Ⅱ)由函數(shù)解析式及(Ⅰ)可知f(1)4,f(0)0,f(2)4,f(3)0.3 3①當(dāng)m(1,2)時(shí),x(1,m],f(x)4,不符合題意;3②當(dāng)m[2,3]f(x在區(qū)間[1,m上的取值范圍是[4,0],符合題意;3③當(dāng)m3f(x)在區(qū)間(2,f(m)f(3)0.綜合上述,m[2,3]19(本小題14分)(Ⅰ)在ABD中,BAD7,ABD4,所以ADB6.由正弦定理: AD

AB

AD

AB ,sinABD sinADB sin45 sin6022

sin60

124236236

(km).sinBAD sin(45306所以△ABD的面積為6

(31) ,2622 2 2 4262S 1ABADsin

1124

62336623

(km2).△ABD

2 2 43(Ⅱ)由BAC 30,ABC 60,得CAD 45,AC 6 .3在中由余弦定理,得3CD2 AC2 AD2 2ACADcosCAD 36316626 43

60.6226215所以,CD 2 (km).1515即點(diǎn)C,D之間的距離為2 km.1520(本小題15分)解(Ⅰ)當(dāng)a2時(shí),f)x 2six則f(0)1.f)x 2cosx,則f'(0)1.曲線在處的切線方程為y x1.(Ⅱ)當(dāng)a1時(shí),記2ex 2則g')x cox.當(dāng)x(0,時(shí),ex 1,所以g)g'(0)0.所以g(x)在(0,)上單調(diào)遞增.因?yàn)間(0)1)e 20,所以函數(shù)y)2(0,上有且僅有一個(gè)零點(diǎn).(Ⅲ)設(shè)cosx2exasinxcosx2.則h')x acoxsix.設(shè)ex acosx.則s')x coxasix.因?yàn)楫?dāng)x[0,]時(shí),exe01,cosx1,sinx 0,所以當(dāng)a0x[0,s'(x0,所以h'(x在區(qū)間[0,上單調(diào)遞增.(1)當(dāng)a1h'(0)1a0hea0,且h'(x)在區(qū)間[0,]上單調(diào)遞增,所以存在唯一x0

(0,),使得h'(x0

)0.x(0,x0

)時(shí),h'(x)0,h(x在區(qū)間(0,x0

)上單調(diào)遞減.可得h(x0

)h(0)0,所以與題意不符.當(dāng)a1時(shí),h(x)exsinxcosx2.h'(x)excosxsinx由h'(x在區(qū)間[0,,h(0)x[0,h'(x)h'(0)0h(x)在區(qū)間[0,h(0)所以h(x)符合題意.當(dāng)a1時(shí)

區(qū)間[0,]上恒成立.h(x)exasinxcosx2exsinxcosx2.由(2)可知,此時(shí)h(x)0在區(qū)間[0,]上恒成立.綜上所述,實(shí)數(shù)a的取值范圍是(,1].21(本小題15分)(Ⅰ(?。?shù)表1不具有性質(zhì)p(2).|

2,1

a3,1

||

2,2

a3,2

||a

2,3

a3,3

|12.(ⅱ)存. t3時(shí),數(shù)表2具有性質(zhì)p(t).(Ⅱ)不存在數(shù)表Am2023

具有性質(zhì)p(6).假設(shè)存在m使得數(shù)表Am2023

具有性質(zhì)p(6),則|a ai,n i1,n|6(i1,2,,m|a ai,n i1,n|6(i1,2,,m1).6列的數(shù)不同,設(shè)其中有k列是第i1,第i1則有6k列是第i0,第i11.所以,從第i行到第i1行,一共增加了62k1,1.……7分.與數(shù)表Am2023

第一行有2023個(gè)1,最后一行有0個(gè)1矛盾.所以,不存在具有性質(zhì)p(6)的數(shù)表A .m2023(Ⅲ)f(t的最大值的為n1.定義m1行n列的數(shù)表B :,m1,m1(j1,2, ,n).其第i行第j列為bi,j

|ai,j

ai1,

|,i1,2,則bi,j

,且bi,j

0表示ai,j

,ai1,

兩數(shù)相同,bi,j

1ai,j

,ai1,

兩數(shù)不同.因?yàn)閿?shù)表Amn

的第1行確定,所以給定數(shù)表B(m1)n

后,數(shù)表Amn

唯一確定.f(tn1.我們按照如下方式,構(gòu)造數(shù)表Bnn

:對于第2s1行和第2ss1,2,,n,,n,22s1,2s

1,b2s1,2

0,b2s,2s

0,b2s,2

1,且在這兩行其余的n2列中,任選相同的t1列都為1,其他列都為0.于是可得到具有性質(zhì)p(t)的數(shù)表A(n1)n

如下:第1列第2列第3列第4列第n-1列第n列第1行1111…1100110011…110000…11…0000…005行…第n+1行即對于每個(gè)t{2,3,f(t)n1.

n,當(dāng)mn1Amn

具有性質(zhì)p(t).,m).②再證tn1f(tn,m).記Sai

ai,2

...ai,n

(i1,2,因?yàn)閠n1是奇數(shù),Si

與Si+1

i

,m1).S1

n,Sm

0,所以m是奇數(shù).我們考慮B 的第i行和i1行,(m1)n因?yàn)閠n1,所以這兩行中都有n11,10.若這兩行相同,則數(shù)表Amn

的第i行和第i2Si

S .i2pq0pqAmn

的第i行和第i2行只

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論