版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1ThereforeAndwewanttofindOurremainderwas–17.Example3:SolutionInExampleSummaryPolynomialscanbedividedbybinomialusingthelongdivisiontechniqueweusefornumbersBeforedividing……writethepolynomialinorderofdescendingpowers(seeExample1)…putazeroinfrontofanymissingterms(seeExample2)WhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisP(b/a)knownastheRemainderTheoremSummaryPolynomialscanbediviPracticeProblemsP.91-92#1-3a,7-9bc,10Note:For#1-3a,donotexpressyouranswerinquotientform.IwantyoutowriteyouranswerslikeIdidinExamples1&2(usingthedivisionformula).So,whenyoucheckyouranswersinthebackofthetext,checktheanswerforpartc(notparta)PracticeProblemsP.91-92#1-3Unit1:PolynomialFunctions
Lesson3:DividingPolynomialsUnit1:PolynomialFunctions
LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–
4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2
toget2x3–2x22x3–2x
2Subtract.Bringdownthenextterm–x
2+8xDivide–x2byxtoget-xMultiplyx–1by-x
toget–x2+xSubtract.Bringdownthenextterm–x
–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7
toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2
toget4x3+2x24x3+2x
2Subtract.Bringdownthenextterm–2x
2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x
toget-2x2-xSubtract.Bringdownthenextterm–x
–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5
toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版初中物理中考復(fù)習(xí)教學(xué)導(dǎo)學(xué)案 (全套含答案)
- 從《榜樣9》悟“四個(gè)帶頭”:對(duì)標(biāo)先進(jìn)砥礪前行
- 能源項(xiàng)目風(fēng)險(xiǎn)管理 課件 7-能源項(xiàng)目風(fēng)險(xiǎn)監(jiān)控管理
- 小升初數(shù)學(xué)銜接教案講義
- 高一化學(xué)達(dá)標(biāo)訓(xùn)練:第三單元從微觀(guān)結(jié)構(gòu)看物質(zhì)的多樣性
- 吉林省吉林市普通中學(xué)2024-2025學(xué)年高三上學(xué)期二模試題 物理
- 2024高中地理第二章區(qū)域生態(tài)環(huán)境建設(shè)第1節(jié)荒漠化的防治-以我國(guó)西北地區(qū)為例2精練含解析新人教必修3
- 2024高中物理第四章電磁感應(yīng)4法拉第電磁感應(yīng)定律達(dá)標(biāo)作業(yè)含解析新人教版選修3-2
- 2024高考地理一輪復(fù)習(xí)第三部分區(qū)域可持續(xù)發(fā)展-重在綜合第四章區(qū)域經(jīng)濟(jì)發(fā)展第33講區(qū)域工業(yè)化與城市化學(xué)案新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第三章金屬及其化合物第二講鋁鎂及其重要化合物規(guī)范演練含解析新人教版
- 新版?zhèn)€人簡(jiǎn)歷Excel表格模板共2聯(lián)
- (完整)中國(guó)象棋教案
- 2023年八年級(jí)物理實(shí)驗(yàn)報(bào)告單
- DL-T 5190.1-2022 電力建設(shè)施工技術(shù)規(guī)范 第1部分:土建結(jié)構(gòu)工程(附條文說(shuō)明)
- 《了凡四訓(xùn)》課件
- 胖東來(lái)商貿(mào)集團(tuán)各項(xiàng)管理制度
- 麥琴每日讀經(jīng)計(jì)劃表
- 連續(xù)梁施工安全培訓(xùn):掛籃施工及安全控制
- 土壤與肥料學(xué)課件
- 供應(yīng)商物料質(zhì)量問(wèn)題賠償協(xié)議(中文)
- 公共廁所(預(yù)算書(shū))
評(píng)論
0/150
提交評(píng)論