湖北省武漢六中高三(國(guó)際部)數(shù)學(xué)復(fù)習(xí)課件:13多項(xiàng)式函數(shù)的因式分解_第1頁(yè)
湖北省武漢六中高三(國(guó)際部)數(shù)學(xué)復(fù)習(xí)課件:13多項(xiàng)式函數(shù)的因式分解_第2頁(yè)
湖北省武漢六中高三(國(guó)際部)數(shù)學(xué)復(fù)習(xí)課件:13多項(xiàng)式函數(shù)的因式分解_第3頁(yè)
湖北省武漢六中高三(國(guó)際部)數(shù)學(xué)復(fù)習(xí)課件:13多項(xiàng)式函數(shù)的因式分解_第4頁(yè)
湖北省武漢六中高三(國(guó)際部)數(shù)學(xué)復(fù)習(xí)課件:13多項(xiàng)式函數(shù)的因式分解_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Unit1:PolynomialFunctions

Lesson3:DividingPolynomialsUnit1:PolynomialFunctions

LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–

4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2

toget2x3–2x22x3–2x

2Subtract.Bringdownthenextterm–x

2+8xDivide–x2byxtoget-xMultiplyx–1by-x

toget–x2+xSubtract.Bringdownthenextterm–x

–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7

toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2

toget4x3+2x24x3+2x

2Subtract.Bringdownthenextterm–2x

2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x

toget-2x2-xSubtract.Bringdownthenextterm–x

–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5

toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1ThereforeAndwewanttofindOurremainderwas–17.Example3:SolutionInExampleSummaryPolynomialscanbedividedbybinomialusingthelongdivisiontechniqueweusefornumbersBeforedividing……writethepolynomialinorderofdescendingpowers(seeExample1)…putazeroinfrontofanymissingterms(seeExample2)WhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisP(b/a)knownastheRemainderTheoremSummaryPolynomialscanbediviPracticeProblemsP.91-92#1-3a,7-9bc,10Note:For#1-3a,donotexpressyouranswerinquotientform.IwantyoutowriteyouranswerslikeIdidinExamples1&2(usingthedivisionformula).So,whenyoucheckyouranswersinthebackofthetext,checktheanswerforpartc(notparta)PracticeProblemsP.91-92#1-3Unit1:PolynomialFunctions

Lesson3:DividingPolynomialsUnit1:PolynomialFunctions

LLongDivisionDoyourememberlongdivision?Let’sreviewitbydividing589by331289271961813willgointo5once3willgointo28ninetimes3willgointo19sixtimesBringdownthe8Bringdownthe9So,589÷3=196witharemainderof1(3×1=3)with2leftoverwith1leftover(3×9=27)with1leftover(3×6=18)LongDivisionDoyourememberlLongDivisionRecapInthepreviousexample:Thedividendwas589WhatisbeingdividedThedivisorwas3WhatisdividingintothedividendThequotientwas196TheanswerTheremainderwas1What’sleftoverDivisionformula:Dividend=divisor×quotient+remainderi.e.589=3×196+1LongDivisionRecapIntheprevDividingPolynomialsbyBinomialsPolynomialsarealgebraicexpressionswithmanytermsx3+2x2–x+5x4-6x3–

4x2+3x–10Binomialsarealgebraicexpressionswithtwotermsx–72x+1WecandivideapolynomialbyabinomialusingthesamelongdivisionprocessweusefornumbersDividingPolynomialsbyBinomiExample1Divide-3x2+2x3+8x–12byx–1Beforewebegin,writethepolynomialinorderofdescendingpowers:2x3–3x2+8x–12Example1Divide-3x2+2x3+8Example1:SolutionDivide2x3byxtoget2x22x2Multiplyx–1by2x2

toget2x3–2x22x3–2x

2Subtract.Bringdownthenextterm–x

2+8xDivide–x2byxtoget-xMultiplyx–1by-x

toget–x2+xSubtract.Bringdownthenextterm–x

–x2+x7x–12Divide7xbyxtoget7Multiplyx–1by7

toget7x–7Subtract.Theremainderis-57+7x–7–5Example1:SolutionDivide2x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–52x3–3x2+8x–12(x–1)(2x2–x+7)=Example1:SolutionBasedonthExample2Divide4x3+9x–12by2x+1Noticethatthere’snox2termBeforewebegin,writein0x2asaplaceholder4x3+0x2+9x–12Example2Divide4x3+9x–12Example2:SolutionDivide4x3by2xtoget2x22x2Multiply2x+1by2x2

toget4x3+2x24x3+2x

2Subtract.Bringdownthenextterm–2x

2+9xDivide–2x2by2xtoget-xMultiply2x+1by-x

toget-2x2-xSubtract.Bringdownthenextterm–x

–2x2–x10x–12Divide10xby2xtoget5Multiply2x+1by5

toget10x+5Subtract.Theremainderis-175+10x+5–17Example2:SolutionDivide4x3Example1:SolutionBasedonthedivisionformula:Dividend=divisor×quotient+remainder–174x3+9x–12(2x+1)(2x2–x+5)=Example1:SolutionBasedonthTheRemainderTheoremWhenaPolynomialFunctionP(x)isdividedbyabinomialax–b,theremainderisacannotbezeroaandbareintegersTheRemainderTheoremWhenaPoExample3VerifytheremaindertheoremusingExamples1&2Example3VerifytheremainderExample3:SolutionInExample1wedivided -3x2+2x3+8x–12byx–1ThereforeAndwewanttofindP(1)Ourremainderwas–5.Example3:SolutionInExampleExample3:SolutionInExample2wedivided4x3+9x–12by2x+1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論