版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.2.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.3.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()4.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.5.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.46.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.8.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為()A. B. C. D.9.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.10.設(shè)分別為的三邊的中點,則()A. B. C. D.11.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的的值為()A. B. C. D.12.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足,則的最大值為________.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.在中,已知,,則A的值是______.16.已知各項均為正數(shù)的等比數(shù)列的前項積為,,(且),則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓上有一動點,點的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標(biāo)為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.18.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當(dāng)一方總分為4分時,比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.19.(12分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.20.(12分)已知函數(shù),.(1)當(dāng)為何值時,軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時,討論零點的個數(shù).21.(12分)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.2、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.3、B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.4、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.5、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關(guān)計算,屬于基礎(chǔ)題.6、C【解析】
根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎(chǔ)題.7、B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.8、A【解析】
設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,故選:A【點睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.9、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).10、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎(chǔ)題.11、C【解析】
根據(jù)給定的程序框圖,計算前幾次的運算規(guī)律,得出運算的周期性,確定跳出循環(huán)時的n的值,進(jìn)而求解的值,得到答案.【詳解】由題意,,第1次循環(huán),,滿足判斷條件;第2次循環(huán),,滿足判斷條件;第3次循環(huán),,滿足判斷條件;可得的值滿足以3項為周期的計算規(guī)律,所以當(dāng)時,跳出循環(huán),此時和時的值對應(yīng)的相同,即.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出問題,其中解答中認(rèn)真審題,得出程序運行時的計算規(guī)律是解答的關(guān)鍵,著重考查了推理與計算能力.12、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組所表示的平面區(qū)域,將目標(biāo)函數(shù)看作點與可行域的點所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,代入點A的坐標(biāo)可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標(biāo)函數(shù)表示點與可行域的點所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標(biāo)函數(shù)的最值,關(guān)鍵在于明確目標(biāo)函數(shù)的幾何意義,屬于中檔題.14、3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15、【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.16、【解析】
利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對數(shù)運算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進(jìn)而求解;(Ⅱ)設(shè)直線方程為,點坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達(dá)定理即可求解,而,當(dāng)重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時,與曲線無交點.當(dāng)直線的斜率不為0時,設(shè)過點的直線方程為,點坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設(shè)點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題18、(1)乙的技術(shù)更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機(jī)變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設(shè)每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點睛】本題考查離散型隨機(jī)變量的分布列和期望,考查數(shù)列遞推關(guān)系的應(yīng)用,是一道難度較大的題目.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】
(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時,觀察式子可得恒成立;當(dāng)時,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時,令,由,,根據(jù)零點存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計算可得結(jié)論.【詳解】(1)當(dāng),,,,令,解得,當(dāng)時,,當(dāng)時,,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時,函數(shù),若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調(diào)遞增,,,可知,一定存在使得,且當(dāng)時,,所以在上,單調(diào)遞減,從而有時,,不滿足題意;綜上可知,實數(shù)a的取值范圍為.解法二:當(dāng)時,函數(shù),又當(dāng)時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調(diào)遞增,,恒成立,從而在上單調(diào)遞增,,由洛比達(dá)法則可知,,,解得.實數(shù)a的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達(dá)法則等知識,注意解題方法的積累,屬于難題.20、(1);(2)見解析.【解析】
(1)設(shè)切點坐標(biāo)為,然后根據(jù)可解得實數(shù)的值;(2)令,,然后對實數(shù)進(jìn)行分類討論,結(jié)合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),,設(shè)曲線與軸相切于點,則,即,解得.所以,當(dāng)時,軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時,,此時,函數(shù)為增函數(shù);當(dāng)時,,此時,函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時,函數(shù)有一個零點;②當(dāng),即當(dāng)時,函數(shù)有兩個零點;③當(dāng),即當(dāng)時,函數(shù)有三個零點;④當(dāng),即當(dāng)時,函數(shù)有兩個零點;⑤當(dāng),即當(dāng)時,函數(shù)只有一個零點.綜上所述,當(dāng)或時,函數(shù)只有一個零點;當(dāng)或時,函數(shù)有兩個零點;當(dāng)時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 地面輻射供暖系統(tǒng)地面磚面層施工技術(shù)探討
- 初一理化生神經(jīng)系統(tǒng)組成
- 語法練習(xí)和答案-定語從句練習(xí)
- 高中語文專題3文明的對話第12課傳統(tǒng)文化與文化傳統(tǒng)課件蘇教版必修
- 2024-2025學(xué)年八年級上學(xué)期英語期中復(fù)習(xí)之Unit1~unit4語法復(fù)習(xí)及練習(xí)(譯林版)
- 專業(yè)技術(shù)人員繼續(xù)教育答案職業(yè)生涯規(guī)劃與管理滿分
- 六年級心理健康教育教案參考修改版
- 匯率制與匯率政策
- Unit 5 A healthy lifestyle Reading2課時練(無答案)
- 部編版二上語文識字4田家四季歌圖文
- 日有所誦(二年級)
- 思鄉(xiāng)曲-馬思聰五線譜
- 姜酚和姜醇的研究成果
- 省優(yōu)質(zhì)幼兒園評估標(biāo)準(zhǔn)及評估細(xì)則檔案整理課件
- 酒店的基本概念
- 重點但位消防安全標(biāo)準(zhǔn)化管理評分細(xì)則自評表
- 軟式內(nèi)鏡的清洗消毒ppt課件
- 傳輸s385v200v210安裝手冊
- 螺絲基礎(chǔ)知識培訓(xùn)ppt課件
- [農(nóng)學(xué)]植物營養(yǎng)學(xué) 氮素ppt課件
- 中微MCU助力家電智能化PPT課件
評論
0/150
提交評論