




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2013-2022十年全國(guó)高考數(shù)學(xué)真題分類(lèi)匯編專(zhuān)題13概率統(tǒng)計(jì)解答題一、解答題1.(2022年全國(guó)甲卷理科·第19題)甲、乙兩個(gè)學(xué)校進(jìn)行體育比賽,比賽共設(shè)三個(gè)項(xiàng)目,每個(gè)項(xiàng)目勝方得10分,負(fù)方得0分,沒(méi)有平局.三個(gè)項(xiàng)目比賽結(jié)束后,總得分高的學(xué)校獲得冠軍.已知甲學(xué)校在三個(gè)項(xiàng)目中獲勝的概率分別為0.5,0.4,0.8,各項(xiàng)目的比賽結(jié)果相互獨(dú)立.(1)求甲學(xué)校獲得冠軍的概率;(2)用X表示乙學(xué)校的總得分,求X的分布列與期望.2.(2022年全國(guó)乙卷理科·第19題)某地經(jīng)過(guò)多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計(jì)一林區(qū)某種樹(shù)木的總材積量,隨機(jī)選取了10棵這種樹(shù)木,測(cè)量每棵樹(shù)的根部橫截面積(單位:)和材積量(單位:),得到如下數(shù)據(jù):樣本號(hào)i12345678910總和根部橫截面積0.040.060.040.080080.050.050.070.070.060.6材積量0.250.400.220.540.510.340.360.460.420.403.9并計(jì)算得.(1)估計(jì)該林區(qū)這種樹(shù)木平均一棵的根部橫截面積與平均一棵的材積量;(2)求該林區(qū)這種樹(shù)木的根部橫截面積與材積量的樣本相關(guān)系數(shù)(精確到0.01);(3)現(xiàn)測(cè)量了該林區(qū)所有這種樹(shù)木的根部橫截面積,并得到所有這種樹(shù)木的根部橫截面積總和為.已知樹(shù)木的材積量與其根部橫截面積近似成正比.利用以上數(shù)據(jù)給出該林區(qū)這種樹(shù)木的總材積量的估計(jì)值.附:相關(guān)系數(shù).3.(2022新高考全國(guó)II卷·第19題)在某地區(qū)進(jìn)行流行病學(xué)調(diào)查,隨機(jī)調(diào)查了100位某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)的頻率分布直方圖:(1)估計(jì)該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);(2)估計(jì)該地區(qū)一位這種疾病患者的年齡位于區(qū)間的概率;(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總?cè)丝诘模畯脑摰貐^(qū)中任選一人,若此人的年齡位于區(qū)間,求此人患這種疾病的概率.(以樣本數(shù)據(jù)中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).4.(2022新高考全國(guó)I卷·第20題)一醫(yī)療團(tuán)隊(duì)為研究某地的一種地方性疾病與當(dāng)?shù)鼐用竦男l(wèi)生習(xí)慣(衛(wèi)生習(xí)慣分為良好和不夠良好兩類(lèi))的關(guān)系,在已患該疾病的病例中隨機(jī)調(diào)查了100例(稱(chēng)為病例組),同時(shí)在未患該疾病的人群中隨機(jī)調(diào)查了100人(稱(chēng)為對(duì)照組),得到如下數(shù)據(jù):不夠良好良好病例組4060對(duì)照組1090(1)能否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習(xí)慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習(xí)慣不夠良好對(duì)患該疾病風(fēng)險(xiǎn)程度的一項(xiàng)度量指標(biāo),記該指標(biāo)為R.(ⅰ)證明:;(ⅱ)利用該調(diào)查數(shù)據(jù),給出的估計(jì)值,并利用(ⅰ)的結(jié)果給出R的估計(jì)值.附,0.0500.0100.001k3.8416.63510.8285.(2021年新高考全國(guó)Ⅱ卷·第21題)一種微生物群體可以經(jīng)過(guò)自身繁殖不斷生存下來(lái),設(shè)一個(gè)這種微生物為第0代,經(jīng)過(guò)一次繁殖后為第1代,再經(jīng)過(guò)一次繁殖后為第2代……,該微生物每代繁殖的個(gè)數(shù)是相互獨(dú)立的且有相同的分布列,設(shè)X表示1個(gè)微生物個(gè)體繁殖下一代的個(gè)數(shù),.(1)已知,求;(2)設(shè)p表示該種微生物經(jīng)過(guò)多代繁殖后臨近滅絕概率,p是關(guān)于x的方程:的一個(gè)最小正實(shí)根,求證:當(dāng)時(shí),,當(dāng)時(shí),;(3)根據(jù)你的理解說(shuō)明(2)問(wèn)結(jié)論的實(shí)際含義.6.(2021年新高考Ⅰ卷·第18題)某學(xué)校組織“一帶一路”知識(shí)競(jìng)賽,有A,B兩類(lèi)問(wèn)題,每位參加比賽的同學(xué)先在兩類(lèi)問(wèn)題中選擇一類(lèi)并從中隨機(jī)抽取一個(gè)問(wèn)題回答,若回答錯(cuò)誤則該同學(xué)比賽結(jié)束:若回答正確則從另一類(lèi)問(wèn)題中再隨機(jī)抽取一個(gè)問(wèn)題回答,無(wú)論回答正確與否,該同學(xué)比賽結(jié)束.A類(lèi)問(wèn)題中的每個(gè)問(wèn)題回答正確得20分,否則得0分:B類(lèi)問(wèn)題中的每個(gè)問(wèn)題回答正確得80分,否則得0分,己知小明能正確回答A類(lèi)問(wèn)題的概率為0.8,能正確回答B(yǎng)類(lèi)問(wèn)題的概率為0.6,且能正確回答問(wèn)題的概率與回答次序無(wú)關(guān).(1)若小明先回答A類(lèi)問(wèn)題,記為小明的累計(jì)得分,求的分布列;(2)為使累計(jì)得分期望最大,小明應(yīng)選擇先回答哪類(lèi)問(wèn)題?并說(shuō)明理由.7.(2020年新高考I卷(山東卷)·第19題)為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門(mén)對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:3218468123710(1)估計(jì)事件“該市一天空氣中濃度不超過(guò),且濃度不超過(guò)”的概率;(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:(3)根據(jù)(2)中列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?附:,0.0500.0100.0013.8416.63510.8288.(2020新高考II卷(海南卷)·第19題)為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門(mén)對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:(1)估計(jì)事件“該市一天空氣中濃度不超過(guò),且濃度不超過(guò)”的概率;(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?附:,9.(2021年高考全國(guó)乙卷理科·第17題)某廠(chǎng)研制了一種生產(chǎn)高精產(chǎn)品的設(shè)備,為檢驗(yàn)新設(shè)備生產(chǎn)產(chǎn)品的某項(xiàng)指標(biāo)有無(wú)提高,用一臺(tái)舊設(shè)備和一臺(tái)新設(shè)備各生產(chǎn)了10件產(chǎn)品,得到各件產(chǎn)品該項(xiàng)指標(biāo)數(shù)據(jù)如下:舊設(shè)備9.810.31001029.99.810.010.110.29.7新設(shè)備10110.410.110.010.110.310.610.510.410.5舊設(shè)備和新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的樣本平均數(shù)分別記為和,樣本方差分別記為和.(1)求,,,;(2)判斷新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備是否有顯著提高(如果,則認(rèn)為新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備有顯著提高,否則不認(rèn)為有顯著提高).10.(2021年高考全國(guó)甲卷理科·第17題)甲、乙兩臺(tái)機(jī)床生產(chǎn)同種產(chǎn)品,產(chǎn)品按質(zhì)量分為一級(jí)品和二級(jí)品,為了比較兩臺(tái)機(jī)床產(chǎn)品的質(zhì)量,分別用兩臺(tái)機(jī)床各生產(chǎn)了200件產(chǎn)品,產(chǎn)品的質(zhì)量情況統(tǒng)計(jì)如下表:一級(jí)品二級(jí)品合計(jì)甲機(jī)床15050200乙機(jī)床12080200合計(jì)270130400(1)甲機(jī)床、乙機(jī)床生產(chǎn)的產(chǎn)品中一級(jí)品的頻率分別是多少?(2)能否有99%的把握認(rèn)為甲機(jī)床的產(chǎn)品質(zhì)量與乙機(jī)床的產(chǎn)品質(zhì)量有差異?附:0.0500.0100.001k3.8416.63510.82811.(2020年高考數(shù)學(xué)課標(biāo)Ⅰ卷理科·第19題)甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場(chǎng)者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場(chǎng)比賽的勝者與輪空者進(jìn)行下一場(chǎng)比賽,負(fù)者下一場(chǎng)輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場(chǎng)比賽雙方獲勝的概率都為,(1)求甲連勝四場(chǎng)的概率;(2)求需要進(jìn)行第五場(chǎng)比賽的概率;(3)求丙最終獲勝的概率.12.(2020年高考數(shù)學(xué)課標(biāo)Ⅱ卷理科·第18題)某沙漠地區(qū)經(jīng)過(guò)治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,,.(1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);(3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說(shuō)明理由.附:相關(guān)系數(shù)r=,≈1.414.13.(2020年高考數(shù)學(xué)課標(biāo)Ⅲ卷理科·第18題)某學(xué)生興趣小組隨機(jī)調(diào)查了某市100天中每天的空氣質(zhì)量等級(jí)和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):鍛煉人次空氣質(zhì)量等級(jí)[0,200](200,400](400,600]1(優(yōu))216252(良)510123(輕度污染)6784(中度污染)720(1)分別估計(jì)該市一天的空氣質(zhì)量等級(jí)為1,2,3,4的概率;(2)求一天中到該公園鍛煉的平均人次的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);(3)若某天的空氣質(zhì)量等級(jí)為1或2,則稱(chēng)這天“空氣質(zhì)量好”;若某天的空氣質(zhì)量等級(jí)為3或4,則稱(chēng)這天“空氣質(zhì)量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)?人次≤400人次>400空氣質(zhì)量好空氣質(zhì)量不好附:,P(K2≥k)0.0500.0100.001k38416.63510.82814.(2019年高考數(shù)學(xué)課標(biāo)Ⅲ卷理科·第17題)為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.(1)求乙離子殘留百分比直方圖中的值;(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).15.(2019年高考數(shù)學(xué)課標(biāo)全國(guó)Ⅱ卷理科·第18題)分制乒乓球比賽,每贏一球得分,當(dāng)某局打成平后,每球交換發(fā)球權(quán),先多得分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為,乙發(fā)球時(shí)甲得分的概率為,各球的結(jié)果相互獨(dú)立.在某局雙方平后,甲先發(fā)球,兩人又打了個(gè)球該局比賽結(jié)束.求;求事件“且甲獲勝”的概率.16.(2019年高考數(shù)學(xué)課標(biāo)全國(guó)Ⅰ卷理科·第21題)為治療某種疾病,研制了甲、乙兩種新藥,希望知道哪種新藥更有效,為此進(jìn)行動(dòng)物試驗(yàn).試驗(yàn)方案如下:每一輪選取兩只白鼠對(duì)藥效進(jìn)行對(duì)比試驗(yàn).對(duì)于兩只白鼠,隨機(jī)選一只施以甲藥,另一只施以乙藥.一輪的治療結(jié)果得出后,再安排下一輪試驗(yàn).當(dāng)其中一種藥治愈的白鼠比另一種藥治愈的白鼠多4只時(shí),就停止試驗(yàn),并認(rèn)為治愈只數(shù)多的藥更有效.為了方便描述問(wèn)題,約定,對(duì)于每輪試驗(yàn),若施以甲藥的白鼠治愈且施以乙藥的白鼠未治愈則甲藥得1分,乙藥得-1分;若施以乙藥的白鼠治愈且施以甲藥的白鼠未治愈則乙藥得1分,甲藥得-1分;若都治愈或都未治愈則兩種藥均得0分.甲、乙兩種藥的治愈率分別記為和,一輪試驗(yàn)中甲藥的得分記為X.(1)求X的分布列;(2)若甲藥、乙藥在試驗(yàn)開(kāi)始時(shí)都賦予4分,表示“甲藥的累計(jì)得分為時(shí),最終認(rèn)為甲藥比乙藥更有效”的概率,則(),其中,,.假設(shè),.(i)證明:為等比數(shù)列;(ii)求,并根據(jù)的值解釋這種試驗(yàn)方案的合理性.17.(2018年高考數(shù)學(xué)課標(biāo)Ⅲ卷(理)·第18題)(12分)某工廠(chǎng)為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種生產(chǎn)方式,為比較兩咱生產(chǎn)方式的效率,選取名工人,將他們隨機(jī)分成兩組,每組人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:)繪制了如下莖葉圖:第一種生產(chǎn)方式第二種生產(chǎn)方式86556899762701223456689877654332814452110090(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;(2)求名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:超過(guò)不超過(guò)第一種生產(chǎn)方式第二種生產(chǎn)方式(3)根據(jù)(2)的列聯(lián)表,能否有的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?附:18.(2018年高考數(shù)學(xué)課標(biāo)Ⅱ卷(理)·第18題)(12分)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線(xiàn)圖.為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線(xiàn)性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.19.(2018年高考數(shù)學(xué)課標(biāo)卷Ⅰ(理)·第20題)(12分)某工廠(chǎng)的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶(hù)之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立.(1)記20件產(chǎn)品中恰有2件不合格品的概率為,求的最大值點(diǎn).(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶(hù)手中,則工廠(chǎng)要對(duì)每件不合格品支付25元的賠償費(fèi)用.(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?20.(2017年高考數(shù)學(xué)新課標(biāo)Ⅰ卷理科·第19題)(12分)為了監(jiān)控某種零件的一條生產(chǎn)線(xiàn)的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線(xiàn)上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線(xiàn)正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線(xiàn)在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.(ⅰ)試說(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95經(jīng)計(jì)算得,,其中為抽取的第個(gè)零件的尺寸,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).附:若隨機(jī)變量服從正態(tài)分布,則,,.21.(2017年高考數(shù)學(xué)課標(biāo)Ⅲ卷理科·第18題)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;(Ⅱ)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?22.(2017年高考數(shù)學(xué)課標(biāo)Ⅱ卷理科·第18題)(12分)淡水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg)某頻率直方圖如下:(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg,估計(jì)A的概率;(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):箱產(chǎn)量<50kg箱產(chǎn)量≥50kg舊養(yǎng)殖法新養(yǎng)殖法(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01)23.(2016高考數(shù)學(xué)課標(biāo)Ⅲ卷理科·第18題)下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線(xiàn)圖.(Ⅰ)由折線(xiàn)圖看出,可用線(xiàn)性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距最小二乘估計(jì)公式分別為:,.24.(2016高考數(shù)學(xué)課標(biāo)Ⅱ卷理科·第18題)(本題滿(mǎn)分12分)某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上年度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:上年度出險(xiǎn)次數(shù)01234保費(fèi)設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:一年內(nèi)出險(xiǎn)次數(shù)01234概率0.300.150.200.200.100.05(=1\*ROMANI)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;(=2\*ROMANII)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出的概率;(=3\*ROMANIII)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.25.(2016高考數(shù)學(xué)課標(biāo)Ⅰ卷理科·第19題)(本小題滿(mǎn)分12分)某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).(I)求的分布列;(=2\*ROMANII)若要求,確定的最小值;(=3\*ROMANIII)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?26.(2015高考數(shù)學(xué)新課標(biāo)2理科·第18題)(本題滿(mǎn)分12分)某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從,兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分如下:地區(qū):6273819295857464537678869566977888827689地區(qū):7383625191465373648293486581745654766579(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的莖葉圖,并通過(guò)莖葉圖比較兩地區(qū)滿(mǎn)意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,得出結(jié)論即可);(Ⅱ)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)等級(jí):滿(mǎn)意度評(píng)分低于70分70分到89分不低于90分滿(mǎn)意度等級(jí)不滿(mǎn)意滿(mǎn)意非常滿(mǎn)意記事件:“地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)高于地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)”.假設(shè)兩地區(qū)用戶(hù)的評(píng)價(jià)結(jié)果相互獨(dú)立.根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.27.(2015高考數(shù)學(xué)新課標(biāo)1理科·第19題)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷(xiāo)售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量(=1,2,···,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值。46.656.36.8289.81.61469108.8表中,。(Ⅰ)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;(Ⅲ)已知這種產(chǎn)品的年利率與、的關(guān)系為.根據(jù)(Ⅱ)的結(jié)果回答下列問(wèn)題:(i)年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?(ii)年宣傳費(fèi)為何值時(shí),年利率的預(yù)報(bào)值最大?附:對(duì)于一組數(shù)據(jù),,……,,其回歸線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:、28.(2014高考數(shù)學(xué)課標(biāo)2理科·第19題)(本小題滿(mǎn)分12分)某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:年份2007200820092010201120122013年份代號(hào)t1234567人均純收入y2.93.33.64.44.85.25.9(Ⅰ)求y關(guān)于t的線(xiàn)性回歸方程;(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年三月份裝修半包合同踢腳線(xiàn)施工驗(yàn)收標(biāo)準(zhǔn)
- 二零二四年7月空間采礦項(xiàng)目資金鏈風(fēng)險(xiǎn)智能預(yù)警模型
- 2024年份8月冷庫(kù)租賃合同中食材存儲(chǔ)溫度約束條款
- 湖南省名校聯(lián)考聯(lián)合體2024-2025學(xué)年高二下學(xué)期第二次聯(lián)考政治試題(原卷版+解析版)
- “節(jié)能宣傳周”活動(dòng)總結(jié)
- 個(gè)人編輯年度工作總結(jié)
- 保安部年終工作總結(jié)
- 所有不動(dòng)產(chǎn)贈(zèng)與合同
- 企業(yè)經(jīng)營(yíng)合同
- 聘請(qǐng)外教合同
- GB/T 16865-2023變形鋁、鎂及其合金加工制品拉伸試驗(yàn)用試樣及方法
- 慢性心功能不全的護(hù)理查房
- 急迫性尿失禁
- 毛中特第一章毛澤東思想及其歷史地位課件
- 浙江大學(xué)《普通化學(xué)》(第6版)筆記和課后習(xí)題(含考研真題)詳解
- 國(guó)際貿(mào)易理論與實(shí)務(wù)(天津財(cái)經(jīng)大學(xué))知到章節(jié)答案智慧樹(shù)2023年
- 《保險(xiǎn)轉(zhuǎn)介紹新解》
- 2023年衢州職業(yè)技術(shù)學(xué)院?jiǎn)握泄P試職業(yè)技能考試題庫(kù)及答案解析
- 敦煌的藝術(shù)智慧樹(shù)知到答案章節(jié)測(cè)試2023年
- 淺談心理學(xué)在促進(jìn)社會(huì)工作服務(wù)質(zhì)量中的作用
- 產(chǎn)品質(zhì)量事故罰款單
評(píng)論
0/150
提交評(píng)論