2022年湖南省株洲市石峰區(qū)畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2022年湖南省株洲市石峰區(qū)畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2022年湖南省株洲市石峰區(qū)畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2022年湖南省株洲市石峰區(qū)畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2022年湖南省株洲市石峰區(qū)畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,二次函數(shù)的圖象開口向下,且經(jīng)過第三象限的點若點P的橫坐標為,則一次函數(shù)的圖象大致是A. B. C. D.2.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.103.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.64.根據(jù)中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10105.對假命題“任何一個角的補角都不小于這個角”舉反例,正確的反例是()A.∠α=60°,∠α的補角∠β=120°,∠β>∠αB.∠α=90°,∠α的補角∠β=90°,∠β=∠αC.∠α=100°,∠α的補角∠β=80°,∠β<∠αD.兩個角互為鄰補角6.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=07.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個數(shù)是()A.1 B.2 C.3 D.48.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.9.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入10.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°11.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.12.的算術平方根是()A.9 B.±9 C.±3 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.14.使分式x215.如果x+y=5,那么代數(shù)式的值是______.16.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的表達式為______.17.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)18.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結(jié)CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.20.(6分)綜合與實踐﹣猜想、證明與拓廣問題情境:數(shù)學課上同學們探究正方形邊上的動點引發(fā)的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關系和位置關系,其結(jié)論為:;(2)希望小組的同學發(fā)現(xiàn),圖1中的點E在邊BC上運動時,(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數(shù)為n,并設法用n表示圖中的一些角,可證明結(jié)論.請你參考同學們的思路,完成證明;(3)創(chuàng)新小組的同學在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).21.(6分)為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數(shù);已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.22.(8分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結(jié)果取整數(shù)).參考數(shù)據(jù):,.23.(8分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,24.(10分)圖中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上(1)畫出將△ABC繞點B按逆時針方向旋轉(zhuǎn)90°后所得到的△A1BC1;(2)畫出將△ABC向右平移6個單位后得到的△A2B2C2;(3)在(1)中,求在旋轉(zhuǎn)過程中△ABC掃過的面積.25.(10分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經(jīng)過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.26.(12分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.27.(12分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數(shù)關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】【分析】根據(jù)二次函數(shù)的圖象可以判斷a、b、的正負情況,從而可以得到一次函數(shù)經(jīng)過哪幾個象限,觀察各選項即可得答案.【詳解】由二次函數(shù)的圖象可知,,,當時,,的圖象經(jīng)過二、三、四象限,觀察可得D選項的圖象符合,故選D.【點睛】本題考查二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì),認真識圖,會用函數(shù)的思想、數(shù)形結(jié)合思想解答問題是關鍵.2、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.3、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.4、B【解析】

根據(jù)題目中的數(shù)據(jù)可以用科學記數(shù)法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學記數(shù)法-表示較大的數(shù),解答本題的關鍵是明確科學記數(shù)法的表示方法.5、C【解析】熟記反證法的步驟,然后進行判斷即可.

解答:解:舉反例應該是證明原命題不正確,即要舉出不符合敘述的情況;

A、∠α的補角∠β>∠α,符合假命題的結(jié)論,故A錯誤;

B、∠α的補角∠β=∠α,符合假命題的結(jié)論,故B錯誤;

C、∠α的補角∠β<∠α,與假命題結(jié)論相反,故C正確;

D、由于無法說明兩角具體的大小關系,故D錯誤.

故選C.6、D【解析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.7、C【解析】

試題解析:∵圖象與x軸有兩個交點,∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯誤;∵由圖象可知x=﹣1時該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個,故選C.考點:二次函數(shù)圖象與系數(shù)的關系.【詳解】請在此輸入詳解!8、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關鍵.9、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.10、D【解析】

根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關鍵.11、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.12、D【解析】

根據(jù)算術平方根的定義求解.【詳解】∵=9,

又∵(±1)2=9,

∴9的平方根是±1,

∴9的算術平方根是1.

即的算術平方根是1.

故選:D.【點睛】考核知識點:算術平方根.理解定義是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2﹣【解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應用,關鍵是根據(jù)圖形的對稱性分析,主要考查學生的計算能力.14、1【解析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點:分式方程的解法15、1【解析】

先將分式化簡,然后將x+y=1代入即可求出答案【詳解】當x+y=1時,原式=x+y=1,故答案為:1.【點睛】本題考查分式的化簡求值,解題的關鍵是利用運用分式的運算法則求解代數(shù)式.16、y=【解析】設圓的半徑是r,根據(jù)圓的對稱性以及反比例函數(shù)的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數(shù)的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數(shù)圖象的對稱性,正確根據(jù)對稱性求得圓的半徑是解題的關鍵.17、>【解析】

根據(jù)數(shù)軸可以確定m、n的大小關系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關鍵.18、(﹣7,0)【解析】

直接利用平移規(guī)律“左加右減,上加下減”得出平移后的解析式進而得出答案.【詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【點睛】此題主要考查了二次函數(shù)與幾何變換,正確掌握平移規(guī)律是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結(jié)MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長線上的“好點”,找AP中點D,此時,D在AB延長線上,如圖,連結(jié)MD;此時,∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長線上的“好點”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點睛】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學思想,理解“好點”的定義并能進行分類討論是解答本題的關鍵.20、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點D與點F關于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).21、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【解析】

(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形22、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及兩個直角三角形,應利用其公共邊構(gòu)造關系式,進而可求出答案.詳解:如圖,過點作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點睛:本題考查解直角三角形的應用--仰角俯角問題,首先構(gòu)造直角三角形,再借助角邊關系、三角函數(shù)的定義解題,難度一般.23、(1)的長為50m;(2)冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【解析】

如圖,作于M,于則,設想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設.在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會受到擋光的影響,春分日6層包括6層以下會受到擋光的影響.【點睛】考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.24、(1)(1)如圖所示見解析;(3)4π+1.【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出對應點位置,即可畫出圖形;

(1)利用平移的性質(zhì)得出對應點位置,進而得出圖形;

(3)根據(jù)△ABC掃過的面積等于扇形BCC1的面積與△A1BC1的面積和,列式進行計算即可.【詳解】(1)如圖所示,△A1BC1即為所求;(1)如圖所示,△A1B1C1即為所求;(3)由題可得,△ABC掃過的面積==4π+1.【點睛】考查了利用旋轉(zhuǎn)變換依據(jù)平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準確找出對應點位置作出圖形是解題的關鍵.求掃過的面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.25、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數(shù)圖象與幾何變換,一次函數(shù)圖象上點的坐標特征,一次函數(shù)的性質(zhì),解一元一次不等式組,都是基礎知識,需熟練掌握.26、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論