版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,BC⊥AE于點C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°2.計算的值為()A. B.-4 C. D.-23.據媒體報道,我國最新研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,這個數用科學記數法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1064.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.5.小張同學制作了四張材質和外觀完全一樣的書簽,每個書簽上寫著一本書的名稱或一個作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機抽取兩張,則抽到的書簽正好是相對應的書名和作者姓名的概率是()A. B. C. D.6.某體育用品商店一天中賣出某種品牌的運動鞋15雙,其中各種尺碼的鞋的銷售量如表所示:鞋的尺碼/cm2323.52424.525銷售量/雙13362則這15雙鞋的尺碼組成的一組數據中,眾數和中位數分別為()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,247.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數為()A.80° B.70° C.60° D.40°8.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.9.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解10.化簡÷的結果是()A. B. C. D.2(x+1)11.下列因式分解正確的是A. B.C. D.12.計算(-1)×2的結果是()A.-2 B.-1 C.1 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A為函數y=(x>0)圖象上一點,連接OA,交函數y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.14.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.15.某航空公司規(guī)定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數圖象確定,則旅客可攜帶的免費行李的最大質量為kg16.若一個多邊形的每一個外角都等于40°,則這個多邊形的邊數是.17.計算:﹣1﹣2=_____.18.如果點、是二次函數是常數圖象上的兩點,那么______填“”、“”或“”三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結果保留根號).20.(6分)小方與同學一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進10米到達點D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.21.(6分)為響應國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區(qū)居民借閱圖書人數有1350人,預計2017年達到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?22.(8分)如圖,已知一次函數y=x+m的圖象與x軸交于點A(﹣4,0),與二次函數y=ax1+bx+c的圖象交于y軸上一點B,該二次函數的頂點C在x軸上,且OC=1.(1)求點B坐標;(1)求二次函數y=ax1+bx+c的解析式;(3)設一次函數y=x+m的圖象與二次函數y=ax1+bx+c的圖象的另一交點為D,已知P為x軸上的一個動點,且△PBD是以BD為直角邊的直角三角形,求點P的坐標.23.(8分)“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民人數是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數;(4)若居民區(qū)有8000人,請估計愛吃D湯圓的人數.24.(10分)已知:在⊙O中,弦AB=AC,AD是⊙O的直徑.求證:BD=CD.25.(10分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.26.(12分)計算27.(12分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據垂直的定義得到∠∠BCE=90°,根據平行線的性質求出∠BCD=55°,計算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點睛】本題考查的是平行線的性質和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.2、C【解析】
根據二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.3、C【解析】試題分析:204000米/分,這個數用科學記數法表示2.04×105,故選C.考點:科學記數法—表示較大的數.4、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.5、D【解析】
根據題意先畫出樹狀圖得出所有等情況數和到的書簽正好是相對應的書名和作者姓名的情況數,再根據概率公式即可得出答案.【詳解】解:根據題意畫圖如下:共有12種等情況數,抽到的書簽正好是相對應的書名和作者姓名的有2種情況,則抽到的書簽正好是相對應的書名和作者姓名的概率是=;故選D.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.6、A【解析】【分析】根據眾數和中位數的定義進行求解即可得.【詳解】這組數據中,24.5出現了6次,出現的次數最多,所以眾數為24.5,這組數據一共有15個數,按從小到大排序后第8個數是24.5,所以中位數為24.5,故選A.【點睛】本題考查了眾數、中位數,熟練掌握中位數、眾數的定義以及求解方法是解題的關鍵.7、B【解析】
根據平行線的性質得到根據BE平分∠ABD,即可求出∠1的度數.【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.8、B【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.9、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關鍵.10、A【解析】
原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.11、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.12、A【解析】
根據兩數相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數的乘法計算,解答本題的關鍵是熟練掌握有理數的乘法法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6.【解析】
作輔助線,根據反比例函數關系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質得OB與OA的比,由同高兩三角形面積的比等于對應底邊的比可以得出結論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.14、【解析】
當AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據兩點之間線段最短求出PN+MN的值.15、20【解析】設函數表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg16、9【解析】解:360÷40=9,即這個多邊形的邊數是917、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.18、【解析】
根據二次函數解析式可知函數圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側的圖象上;接下來,結合二次函數的性質可判斷對稱軸左側圖象的增減性,【詳解】解:二次函數的函數圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數的圖像和數形結合的數學思想.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(6+2)米【解析】
根據題意求出∠BAD=∠ADB=45°,進而根據等腰直角三角形的性質求得FD,在Rt△PEH中,利用特殊角的三角函數值分別求出BF,即可求得PG,在Rt△PCG中,繼而可求出CG的長度.【詳解】由題意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,∵tanβ=,∴CG=(5+6)·=5+2,∴CD=(6+2)米.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是構造直角三角形,利用三角函數的知識求解相關線段的長度.20、(1);(2).【解析】試題分析:(1)過點A作AE⊥CB于點E,設AE=x,分別表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)過點B作BF⊥AC于點F,設BF=y,分別表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的長度.試題解析:(1)如圖,過A作AH⊥CB于H,設AH=x,CH=x,DH=x.∵CH―DH=CD,∴x―x=10,∴x=.∵∠ADH=45°,∴AD=x=.(2)如圖,過B作BM⊥AD于M.∵∠1=75°,∠ADB=45°,∴∠DAB=30°.設MB=m,∴AB=2m,AM=m,DM=m.∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.21、(1)20%;(2)12.1.【解析】試題分析:(1)經過兩次增長,求年平均增長率的問題,應該明確原來的基數,增長后的結果.設這兩年的年平均增長率為x,則經過兩次增長以后圖書館有書7100(1+x)2本,即可列方程求解;(2)先求出2017年圖書借閱總量的最小值,再求出2016年的人均借閱量,2017年的人均借閱量,進一步求得a的值至少是多少.試題解析:(1)設該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為x,根據題意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:該社區(qū)的圖書借閱總量從2014年至2016年的年平均增長率為20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考點:一元二次方程的應用;一元一次不等式的應用;最值問題;增長率問題.22、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】
(1)根據y=0.5x+m交x軸于點A,進而得出m的值,再利用與y軸交于點B,即可得出B點坐標;(1)二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1.得出可設二次函數y=ax1+bx+c=a(x﹣1)1,進而求出即可;(3)根據當B為直角頂點,當D為直角頂點時,分別利用三角形相似對應邊成比例求出即可.【詳解】(1)∵y=x+1交x軸于點A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點B,∵x=0,∴y=1∴B點坐標為:(0,1),(1)∵二次函數y=ax1+bx+c的圖象與x軸只有唯一的交點C,且OC=1∴可設二次函數y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當B為直角頂點時,過B作BP1⊥AD交x軸于P1點由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯立求出兩函數交點坐標:D點坐標為:(5,4.5),則AD=,當D為直角頂點時∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點坐標為(7.15,0);∴點P的坐標為:P1(1,0)和P1(7.15,0).【點睛】此題主要考查了二次函數綜合應用以及求函數與坐標軸交點和相似三角形的與性質等知識,根據已知進行分類討論得出所有結果,注意不要漏解.23、(1)600;(2)120人,20%;30%;(3)108°(4)愛吃D湯圓的人數約為3200人【解析】試題分析:(1)由兩幅統(tǒng)計圖中的信息可知,喜歡B類的有60人,占被調查人數的10%,由此即可計算出被調查的總人數為60÷10%=600(人);(2)由(1)中所得被調查總人數為600人結合統(tǒng)計圖中已有的數據可得喜歡C類的人數為:600-180-60-240=120(人),喜歡C類的占總人數的百分比為:120÷600×100%=20%,喜歡A類的占總人數的百分比為:180÷600×100%=30%,由此即可將統(tǒng)計圖補充完整;(3)由(2)中所得數據可得扇形統(tǒng)計圖中A類所對應的圓心角度數為:360°×30%=108°;(4)由扇形統(tǒng)計圖中的信息:喜歡D類的占總人數的40%可得:8000×40%=3200(人);試題解析:(1)本次參加抽樣調查的居民的人數是:60÷10%=600(人);故答案為600;(2)由題意得:C的人數為600﹣(180+60+240)=600﹣480=120(人),C的百分比為120÷600×100%=20%;A的百分比為180÷600×100%=30%;將兩幅統(tǒng)計圖補充完整如下所示:(3)根據題意得:360°×30%=108°,∴圖②中表示“A”的圓心角的度數108°;(4)8000×40%=3200(人),即愛吃D湯圓的人數約為3200人.24、證明見解析【解析】
根據AB=AC,得到,于是得到∠ADB=∠ADC,根據AD是⊙O的直徑,得到∠B=∠C=90°,根據三角形的內角和定理得到∠BAD=∠DAC,于是得到結論.【詳解】證明:∵AB=AC,∴,∴∠ADB=∠ADC,∵AD是⊙O的直徑,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴,∴BD=CD.【點睛】本題考查了圓周角定理,熟記圓周角定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩節(jié)主題創(chuàng)意活動策劃方案
- 教師培訓講座材料
- FIB-4與PLR預測肝部分切除術后肝功能衰竭的價值研究
- 二零二五年度建筑施工安全文明施工責任書3篇
- 二零二五年度建筑材料銷售聘用合同范本3篇
- 二零二五年度民間借貸債務催收代理合同3篇
- 多水下機器人編隊自適應行為控制方法研究
- 雙十一吃龍蝦活動策劃案
- 二零二五年度個人藝術品委托拍賣協議書3篇
- 酒店管理工作實操指南
- 人教版高一數學上冊期末考試試卷及答案
- 圍術期下肢深靜脈血栓預防的術中護理
- GB/T 12996-2012電動輪椅車
- 小象學院深度學習-第7講遞歸神經網絡
- 三方采購協議范本
- 《材料分析測試技術》全套教學課件
- 安全學原理第2版-ppt課件(完整版)
- 傾聽是一種美德
- 武漢東湖賓館建設項目委托代建合同
- 巴布亞新幾內亞離網光儲微網供電方案
- Flexsim物流系統(tǒng)建模與仿真ppt課件(完整版)
評論
0/150
提交評論