2022屆湖南省長沙市博才實驗中學(xué)中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
2022屆湖南省長沙市博才實驗中學(xué)中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
2022屆湖南省長沙市博才實驗中學(xué)中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
2022屆湖南省長沙市博才實驗中學(xué)中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
2022屆湖南省長沙市博才實驗中學(xué)中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.?dāng)?shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D2.將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第7個圖形的小圓個數(shù)是()A.56 B.58 C.63 D.723.下列方程中,沒有實數(shù)根的是()A. B.C. D.4.如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,連接CD,若⊙O的半徑r=5,AC=53,則∠B的度數(shù)是(

)A.30°B.45°C.50°D.60°5.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣16.已知平面內(nèi)不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57.若a+|a|=0,則等于()A.2﹣2a B.2a﹣2 C.﹣2 D.28.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.9.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.410.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動的時間如下表所示,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()勞動時間(小時)33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.511.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,312.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算(﹣a2b)3=__.14.經(jīng)過兩次連續(xù)降價,某藥品銷售單價由原來的50元降到32元,設(shè)該藥品平均每次降價的百分率為x,根據(jù)題意可列方程是__________________________.15.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.16.計算:(2018﹣π)0=_____.17.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm18.如圖,甲和乙同時從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠3900米,甲準(zhǔn)備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習(xí)冊.于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=2x的圖象相交于點A,其橫坐標(biāo)為1.(1)求k的值;(1)點B為此反比例函數(shù)圖象上一點,其縱坐標(biāo)為2.過點B作CB∥OA,交x軸于點C,求點C的坐標(biāo).20.(6分)如圖,AD是△ABC的中線,AD=12,AB=13,BC=10,求AC長.21.(6分)已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=4522.(8分)如圖,中,,于,,為邊上一點.(1)當(dāng)時,直接寫出,.(2)如圖1,當(dāng),時,連并延長交延長線于,求證:.(3)如圖2,連交于,當(dāng)且時,求的值.23.(8分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)24.(10分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.25.(10分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當(dāng)點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)26.(12分)(2017四川省內(nèi)江市)小明隨機調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:(1)這項被調(diào)查的總?cè)藬?shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.27.(12分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負(fù)數(shù)的數(shù).③有理數(shù)的絕對值都是非負(fù)數(shù).2、B【解析】試題分析:第一個圖形的小圓數(shù)量=1×2+2=4;第二個圖形的小圓數(shù)量=2×3+2=8;第三個圖形的小圓數(shù)量=3×4+2=14;則第n個圖形的小圓數(shù)量=n(n+1)+2個,則第七個圖形的小圓數(shù)量=7×8+2=58個.考點:規(guī)律題3、B【解析】

分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;

B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;

C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.

故選:B.【點睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0根時,方程有兩個不相等的兩個實數(shù)根;當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;當(dāng)△<0時,方程無實數(shù)根.4、D【解析】根據(jù)圓周角定理的推論,得∠B=∠D.根據(jù)直徑所對的圓周角是直角,得∠ACD=90°.

在直角三角形ACD中求出∠D.則sinD=AC∠D=60°∠B=∠D=60°.故選D.“點睛”此題綜合運用了圓周角定理的推論以及銳角三角函數(shù)的定義,解答時要找準(zhǔn)直角三角形的對應(yīng)邊.5、A【解析】

根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.6、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標(biāo)的相關(guān)知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標(biāo)相等或互為相反數(shù).7、A【解析】

直接利用二次根式的性質(zhì)化簡得出答案.【詳解】∵a+|a|=0,∴|a|=-a,則a≤0,故原式=2-a-a=2-2a.故選A.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確化簡二次根式是解題關(guān)鍵.8、A【解析】解:如圖,連接BE,設(shè)BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最?。碢在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.9、A【解析】根據(jù)題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據(jù)題目的描述,可以判斷出這個幾何體應(yīng)該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.10、A【解析】

根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個人,∴第4個人的勞動時間為中位數(shù),所以中位數(shù)為4,故選A.【點睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.11、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.12、A【解析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、?a6b3【解析】

根據(jù)積的乘方和冪的乘方法則計算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點睛】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運算法則.14、50(1﹣x)2=1.【解析】由題意可得,50(1?x)2=1,故答案為50(1?x)2=1.15、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.16、1.【解析】

根據(jù)零指數(shù)冪:a0=1(a≠0)可得答案.【詳解】原式=1,故答案為:1.【點睛】此題主要考查了零次冪,關(guān)鍵是掌握計算公式.17、【解析】

根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質(zhì)得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質(zhì)、勾股定理的應(yīng)用和三角形面積公式的應(yīng)用,根據(jù)三角形的面積公式求出腰與底的比是解題的關(guān)18、5200【解析】設(shè)甲到學(xué)校的距離為x米,則乙到學(xué)校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學(xué)校距離為2400米,乙到學(xué)校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數(shù)的應(yīng)用,二元一次方程組的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)k=11;(1)C(2,0).【解析】試題分析:(1)首先求出點A的坐標(biāo)為(1,6),把點A(1,6)代入y=即可求出k的值;

(1)求出點B的坐標(biāo)為B(4,2),設(shè)直線BC的解析式為y=2x+b,把點B(4,2)代入求出b=-9,得出直線BC的解析式為y=2x-9,求出當(dāng)y=0時,x=2即可.試題解析:(1)∵點A在直線y=2x上,其橫坐標(biāo)為1.∴y=2×1=6,∴A(1,6),把點A(1,6)代入,得,解得:k=11;(1)由(1)得:,∵點B為此反比例函數(shù)圖象上一點,其縱坐標(biāo)為2,∴,解得x=

4,∴B(4,2),∵CB∥OA,∴設(shè)直線BC的解析式為y=2x+b,把點B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,∴直線BC的解析式為y=2x﹣9,當(dāng)y=0時,2x﹣9=0,解得:x=2,∴C(2,0).20、2.【解析】

根據(jù)勾股定理逆定理,證△ABD是直角三角形,得AD⊥BC,可證AD垂直平分BC,所以AB=AC.【詳解】解:∵AD是△ABC的中線,且BC=10,∴BD=BC=1.∵12+122=22,即BD2+AD2=AB2,∴△ABD是直角三角形,則AD⊥BC,又∵CD=BD,∴AC=AB=2.【點睛】本題考核知識點:勾股定理、全等三角形、垂直平分線.解題關(guān)鍵點:熟記相關(guān)性質(zhì),證線段相等.21、(1)作圖見解析;(2)⊙O的半徑為52【解析】

(1)作出相應(yīng)的圖形,如圖所示;(2)由平行四邊形的對邊平行得到AD與BC平行,可得同旁內(nèi)角互補,再由AE與BE為角平分線,可得出AE與BE垂直,利用直徑所對的圓周角為直角,得到AF與FB垂直,可得出兩銳角互余,根據(jù)角平分線性質(zhì)及等量代換得到∠AGF=∠AEB,根據(jù)sin∠AGF的值,確定出sin∠AEB的值,求出AB的長,即可確定出圓的半徑.【詳解】解:(1)作出相應(yīng)的圖形,如圖所示(去掉線段BF即為所求).(2)∵AD∥BC,∴∠DAB+∠CBA=180°.∵AE與BE分別為∠DAB與∠CBA的平分線,∴∠EAB+∠EBA=90°,∴∠AEB=90°.∵AB為⊙O的直徑,點F在⊙O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°.∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF=45=AE∵AE=4,∴AB=5,∴⊙O的半徑為52【點睛】此題屬于圓綜合題,涉及的知識有:圓周角定理,平行四邊形的判定與性質(zhì),角平分線性質(zhì),以及銳角三角函數(shù)定義,熟練掌握各自的性質(zhì)及定理是解本題的關(guān)鍵.22、(1),;(2)證明見解析;(3).【解析】

(1)利用相似三角形的判定可得,列出比例式即可求出結(jié)論;(2)作交于,設(shè),則,根據(jù)平行線分線段成比例定理列出比例式即可求出AH和EH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結(jié)論;(3)作于,根據(jù)相似三角形的判定可得,列出比例式可得,設(shè),,,即可求出x的值,根據(jù)平行線分線段成比例定理求出,設(shè),,,然后根據(jù)勾股定理求出AC,即可得出結(jié)論.【詳解】(1)如圖1中,當(dāng)時,.,,,,,,.故答案為:,.(2)如圖中,作交于.,,∴tan∠B=,tan∠ACE=tan∠B=∴BE=2CE,,,設(shè),則,,,,,,,.(3)如圖2中,作于.,,,,,,,,,,,設(shè),,,則有,解得或(舍棄),,,,,,,,,,,設(shè),,,在中,,,,,.【點睛】此題考查的是相似三角形的應(yīng)用和銳角三角函數(shù),此題難度較大,掌握相似三角形的判定及性質(zhì)、平行線分線段成比例定理和利用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.23、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析;(3)△PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.【解析】【分析】(1)根據(jù)作線段的垂直平分線的方法作圖即可得出結(jié)論;(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數(shù)求出∠AED,即可得出結(jié)論;(3)先判斷出△AEP≌△FBP,即可得出結(jié)論.【詳解】(1)依題意作出圖形如圖①所示;(2)EB是平分∠AEC,理由:∵四邊形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵點E是CD的中點,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形,圖形的變換等,熟練掌握和靈活應(yīng)用相關(guān)的性質(zhì)與定理、判斷出△AEP≌△△FBP是解本題的關(guān)鍵.24、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用,用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論