2022年湖南省益陽地區(qū)達標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第1頁
2022年湖南省益陽地區(qū)達標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第2頁
2022年湖南省益陽地區(qū)達標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第3頁
2022年湖南省益陽地區(qū)達標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第4頁
2022年湖南省益陽地區(qū)達標(biāo)名校中考適應(yīng)性考試數(shù)學(xué)試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.3582.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米23.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=4.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F(xiàn)分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.125.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C6.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°7.﹣23的相反數(shù)是()A.﹣8 B.8 C.﹣6 D.68.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.9.下列計算正確的是()A.(a2)3=a6 B.a(chǎn)2?a3=a6 C.a(chǎn)3+a4=a7 D.(ab)3=ab310.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.某中學(xué)數(shù)學(xué)教研組有25名教師,將他們分成三組,在38~45(歲)組內(nèi)有8名教師,那么這個小組的頻率是_______。12.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.13.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉(zhuǎn),使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.14.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.15.某校園學(xué)子餐廳把WIFI密碼做成了數(shù)學(xué)題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學(xué)子餐廳的網(wǎng)絡(luò),那么他輸入的密碼是______.16.同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為.17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).三、解答題(共7小題,滿分69分)18.(10分)列方程或方程組解應(yīng)用題:去年暑期,某地由于暴雨導(dǎo)致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.19.(5分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標(biāo);(2)若直線EF的解析式為y=3(3)若雙曲線y=k20.(8分)某班為了解學(xué)生一學(xué)期做義工的時間情況,對全班50名學(xué)生進行調(diào)查,按做義工的時間(單位:小時),將學(xué)生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據(jù)以上信息,解答下列問題:類學(xué)生有人,補全條形統(tǒng)計圖;類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的%;從該班做義工時間在的學(xué)生中任選2人,求這2人做義工時間都在中的概率.21.(10分)如圖,∠BCD=90°,且BC=DC,直線PQ經(jīng)過點D.設(shè)∠PDC=α(45°<α<135°),BA⊥PQ于點A,將射線CA繞點C按逆時針方向旋轉(zhuǎn)90°,與直線PQ交于點E.當(dāng)α=125°時,∠ABC=°;求證:AC=CE;若△ABC的外心在其內(nèi)部,直接寫出α的取值范圍.22.(10分)已知x1﹣1x﹣1=1.求代數(shù)式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.23.(12分)如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?24.(14分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關(guān)鍵.2、C【解析】

連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.3、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關(guān)鍵.4、B【解析】

首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F(xiàn)分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結(jié)合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.5、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應(yīng)的數(shù)為-2,B對應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.?dāng)?shù)軸.6、C【解析】

由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應(yīng)用是解此題的關(guān)鍵.7、B【解析】∵=﹣8,﹣8的相反數(shù)是8,∴的相反數(shù)是8,故選B.8、C【解析】

根據(jù)軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關(guān)鍵是熟練掌握概念進行分析判斷.9、A【解析】分析:根據(jù)冪的乘方、同底數(shù)冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數(shù)不變,指數(shù)相乘,原式計算正確;B、同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數(shù)冪的乘法、積的乘方計算法則,屬于基礎(chǔ)題型.理解各種計算法則是解題的關(guān)鍵.10、D【解析】

此題運用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側(cè)面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點P應(yīng)該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.二、填空題(共7小題,每小題3分,滿分21分)11、0.1【解析】

根據(jù)頻率的求法:頻率=,即可求解.【詳解】解:根據(jù)題意,38-45歲組內(nèi)的教師有8名,

即頻數(shù)為8,而總數(shù)為25;

故這個小組的頻率是為=0.1;

故答案為0.1.【點睛】本題考查頻率、頻數(shù)的關(guān)系,屬于基礎(chǔ)題,關(guān)鍵是掌握頻率的求法:頻率=.12、A【解析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關(guān)鍵.13、.【解析】

試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉(zhuǎn),使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉(zhuǎn)的性質(zhì).14、2【解析】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關(guān)系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點睛:此題主要是考查了三角形的三邊關(guān)系,同時注意整數(shù)這一條件.15、143549【解析】

根據(jù)題中密碼規(guī)律確定所求即可.【詳解】532=5×3×10000+5×2×100+5×(2+3)=151025924=9×2×10000+9×4×100+9×(2+4)=183654,863=8×6×10000+8×3×100+8×(3+6)=482472,∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案為:143549【點睛】本題考查有理數(shù)的混合運算,根據(jù)題意得出規(guī)律并熟練掌握運算法則是解題關(guān)鍵.16、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結(jié)果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36種等可能的結(jié)果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.17、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F(xiàn)分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.三、解答題(共7小題,滿分69分)18、吉普車的速度為30千米/時.【解析】

先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學(xué)生對分式方程實際應(yīng)用的綜合運用.為中考常見題型,要求學(xué)生牢固掌握.注意檢驗.19、(1)E(-3,4)、F(-5,0);(2)-334【解析】

(1)連接OE,BF,根據(jù)題意可知:BC=OA=8,BA=OC=4,設(shè)EC=x,則BE=OE=8-x,根據(jù)勾股定理可得:OC2+CE2(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE,證明△BGE≌△OGF,證明四邊形OEBF為菱形,令y=0,則3x+3=0,解得x=-3,根據(jù)菱形的性質(zhì)得OF=OE=BE=BF=3令y=n,則3x+3=n,解得x=n-33(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,根據(jù)勾股定理得到(-m-x)2+n2=x2,解得x=-m2+n22m,求出點E(m2-n22m?,?n)、F(即可求出tan∠EFO=-m【詳解】解:(1)如圖:連接OE,BF,E(-3,4)、F(-5,0)(2)連接BF、OE,連接BO交EF于G由翻折可知:GO=GB,BE=OE可證:△BGE≌△OGF(ASA)∴BE=OF∴四邊形OEBF為菱形令y=0,則3x+3=0,解得x=-3令y=n,則3x+3=n,解得x=n-3在Rt△COE中,(-n-3解得n=3∴E(-3∴k=-(3)設(shè)EB=EO=x,則CE=-m-x,在Rt△COE中,(-m-x)2+n2=x2,解得x=-∴E(m2-n∴EF的中點為(m2將E(m2-n22mn(m2-n∴tan∠EFO=-【點睛】考查矩形的折疊與性質(zhì),勾股定理,一次函數(shù)的圖象與性質(zhì),待定系數(shù)法求反比例函數(shù)解析式,銳角三角函數(shù)等,綜合性比較強,難度較大.20、(1)5;(2)36%;(3).【解析】試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進行求解,然后根據(jù)所求數(shù)據(jù)補全條形圖即可;(2)根據(jù):小組頻數(shù)=,進行求解即可;(3)利用列舉法求概率即可.試題解析:(1)E類:50-2-3-22-18=5(人),故答案為:5;補圖如下:(2)D類:1850×100%=36%,故答案為:36%;(3)設(shè)這5人為有以下10種情況:其中,兩人都在的概率是:.21、(1)125;(2)詳見解析;(3)45°<α<90°.【解析】

(1)利用四邊形內(nèi)角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)證明△ABC≌△EDC(AAS)即可求解;(3)當(dāng)∠ABC=α=90°時,△ABC的外心在其直角邊上,∠ABC=α>90°時,△ABC的外心在其外部,即可求解.【詳解】(1)在四邊形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案為125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)當(dāng)∠AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論