版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES1固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件2固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件3ValueofThree-PeriodOption-FreeBond
C=9,F=100
ValueofThree-PeriodOption-F4CallableBondsandPutableBonds
BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon5CallableandPutableBonds
InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo6CallableandPutableBonds
Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds7CallableBonds
ValuationinaBinomialModel
thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds
Valuationina8固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件9固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件10ValueofPutablebondValueofPutablebond11固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件12Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.
Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.
AlternativeBinomialValuationApproach
Analternativebutequivalent13consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree
consideragainthethree-perio14固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件15固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件16固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件17CallableandPutableBonds
MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds
Mon18CallableandPutableBonds
MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalsobeappliedtothevaluationofallkindsofinterestratesderivativesCallableandPutableBonds
Mon19OptionsonBonds
TerminologyAnoptionisacontractinwhichtheseller(writer)grantsthebuyertherighttopurchasefrom,orsellto,theselleranunderlyingasset(hereabond)ataspecifiedpricewithinaspecifiedperiodoftimeThesellergrantsthisrighttothebuyerinexchangeforacertainsumofmoneycalledtheoptionpriceoroptionpremiumThepriceatwhichtheinstrumentmaybeboughtorsoldiscalledtheexerciseorstrikepriceThedateafterwhichanoptionisvoidiscalledtheexpirationdate–AnAmericanoptionmaybeexercisedanytimeuptoandincludingtheexpirationdate–AEuropeanoptionmaybeexercisedonlyontheexpirationdateOptionsonBonds
TerminologyAn20OptionsonBonds
FactorsthatInfluenceOptionPrices
Currentpriceofunderlyingsecurity–Asthepriceoftheunderlyingbondincreases,thevalueofacalloptionrisesandthevalueofaputoptionfalls?Strikeprice–Call(put)optionsbecomemore(less)valuableastheexercisepricedecreasesTimetoexpiration–ForAmericanoptions,thelongerthetimetoexpiration,thehighertheoptionpricebecauseallexerciseopportunitiesopentotheholderoftheshort-lifeoptionarealsoopentotheholderofthelong-lifeoption?Short-termrisk-freeinterestrate–Priceofcalloptiononbondincreasesandpriceofputoptiononbonddecreasesasshort-terminterestraterises(throughimpactonbondprice)?Expectedvolatilityofyields(orprices)–Astheexpectedvolatilityofyieldsoverthelifeoftheoptionincreases,thepriceoftheoptionwillalsoincreaseOptionsonBonds
Factorsthat21OptionsonBonds
PricingOptionsonlong-termbonds–Interestpaymentsaresimilartodividends–Otherwise,long-termbondsarelikeoptionsonstock:–WecanuseBlack-Scholesasinoptionsondividend-payingequity?Optionsonshort-termbonds–Problem:theyarenotlikeastockbecausetheyquicklyconvergetopar–WecannotdirectlyapplyBlack-Scholes?Othershortcomingsofstandardoptionpricingmodels–Assumptionofaconstantshort-termrateisinappropriateforbondoptions–Assumptionofaconstantvolatilityisalsoinappropriate:asabondmovesclosertomaturity,itspricevolatilitydeclineOptionsonBonds
PricingOption22OptionsonBonds
PricingAsolutiontoavoidtheproblemistoconsideraninterestratemodel,–Thefollowingfigureshowsatreeforthe1-yearrateofinterest(calibratedtothecurrentTS)–Thefigurealsoshowsthevaluesforadiscountbond(par=100)ateachnodeinthetreeOptionsonBonds
PricingAsolu23OptionsonBonds
PricingConsidera2-yearEuropeancallonthis3-yearbondstruckat93.5Startbycomputingthevalueattheendofthetree–Ifbytheendofthe2ndyeartheshort-termratehasrisento7%andthebondistradingat93,theoptionwillexpireworthless–Ifthebondistradingat94(correspondingtoashort-termrateof6%)thecalloptionisworth0.5–Ifthebondistradingat95(short-termrate=5%),thecallisworth1.5WorkingourwaybackwardthetreeOptionsonBonds
PricingConsid24OptionsonBonds
Put-CallParityAssumptionnocouponpaymentsandnoprematureexerciseConsideraportfoliowherewepurchaseonezerocouponbond,oneputEuropeanoption,andsell(write)oneEuropeancalloption(sametimetomaturityTandthesamestrikepriceX)PayoffatdateTOptionsonBonds
Put-CallPari25OptionsonBonds
Put-CallParity–Con’tNomatterwhatstateoftheworldobtainsattheexpirationdate,theportfoliowillbeworthXThus,thepayofffromtheportfolioisrisk-free,andwecandiscountitsvalueattherisk-freeraterWeobtainthecall-putrelationship?ForcouponbondsOptionsonBonds
Put-CallPari26ConvertibleBonds
DefinitionConvertiblesecuritiesareusuallyeitherconvertiblebondsorconvertiblepreferredshareswhicharemostoftenexchangeableintothecommonstockofthecompanyissuingtheconvertiblesecurityBeingdebtorpreferredinstruments,theyhaveanadvantagetothecommonstockincaseofdistressorbankruptcyConvertiblebondsoffertheinvestorthesafetyofafixedincomeinstrumentcoupledwithparticipationintheupsideoftheequitymarketsEssentially,convertiblebondsarebondsthat,attheholder'soption,areconvertibleintoaspecifiednumberofsharesConvertibleBonds
DefinitionCo27ConvertibleBonds
TerminologyConvertiblebonds–Bondholderhasarighttoconvertbondforpre-specifiednumberofshareofcommonstockTerminology–Convertiblepriceisthepriceoftheconvertiblebond–Bondfloororinvestmentvalueisthepriceofthebondifthereisnoconversionoption–Conversionratioisthenumberofsharesthatisexchangedforabond–Conversionvalue=currentsharepricexconversionratio–Conversionpremium=(convertibleprice–conversionvalue)/conversionvalue
ConvertibleBonds
TerminologyC28ConvertibleBonds
ExamplesExample1:–Currentbondprice=$930–Conversionratio:1bond=30sharescommon–Currentstockprice=$25/share–MarketConversionValue=(30shares)x(25)=$750–ConversionPremium=(930–750)/750=180/750=24%?Example2:AXAConvertibleBond–AXAhasissuedinthe€zoneaconvertiblebondpayinga2.5%couponrateandmaturingon01/01/2014;theconversionratiois4.04–On12/13/2001,thecurrentsharepricewas€24.12andthebid-askconvertiblepricewas156.5971/157.5971–Theconversionvaluewasequalto€97.44=4.04x24.12–Theconversionpremiumcalculatedwiththeaskprice157.5971was61.73%=(157.5791-97.44)/97.44–Theconversionofthebondinto4.04sharescanbeexecutedonanydatebeforethematuritydateConvertibleBonds
ExamplesExam29ConvertibleBonds
UsesFortheissuer–Issuingconvertiblebondsenablesafirmtoobtainbetterfinancialconditions–Couponrateofsuchabondisalwayslowertothatofabulletbondwiththesamecharacteristicsintermsofmaturityandcouponfrequency–Thiscomesdirectlyfromtheconversionadvantagewhichisattachedtothisproduct–BesidestheexchangeofbondsforsharesdiminishestheliabilitiesofthefirmissuerandincreasesinthesametimeitsequitysothatitsdebtcapacityisimprovedFortheconvertiblebondholder–Theconvertiblebondisadefensivesecurity,verysensitivetoariseinthesharepriceandprotectivewhenthesharepricedecreases–Ifthesharepriceincreases,theconvertiblepricewillalsoincrease–Whensharepricedecreases,priceofconvertiblenevergetsbelowthebondfloor,i.e.,thepriceofanotherwiseidenticalbulletbondwithnoconversionoptionConvertibleBonds
UsesForthe30ConvertibleBonds
DeterminantsofConvertibleBondPricesConvertiblebondissimilartoanormalcouponbondplusacalloptionontheunderlyingstock
–Withanimportantdifference:theeffectivestrikepriceofthecalloptionwillvarywiththepriceofthebondConvertiblesecuritiesarepricedasafunctionof
–Thepriceoftheunderlyingstock–Expectedfuturevolatilityofequityreturns–Riskfreeinterestrates–Callprovisions–Supplyanddemandforspecificissues–Issue-specificcorporate/Treasuryyieldspread–Expectedvolatilityofinterestratesandspreads?Thus,thereislargeroomforrelativemis-valuationsConvertibleBonds
Determinants31ConvertibleBonds
ConvertibleBondPriceasaFunctionofStockPriceConvertibleBonds
Convertible32ConvertibleBonds
ConvertibleBondPricingModelApopularmethodforpricingconvertiblebondsisthecomponentmodel–Theconvertiblebondisdividedintoastraightbondcomponentandacalloptionontheconversionprice,withstrikepriceequaltothevalueofthestraightbondcomponent–Thefairvalueofthetwocomponentscanbecalculatedwithstandardformulas,suchasthefamousBlack-Scholesvaluationformula.?Thispricingapproach,however,hasseveraldrawbacks–First,separatingtheconvertibleintoabondcomponentandanoptioncomponentreliesonrestrictiveassumptions,suchastheabsenceofembeddedoptions(callabilityandputability,forinstance,areconvertiblebondfeaturesthatcannotbeconsideredintheaboveseparation)–Second,convertiblebondscontainanoptioncomponentwithastochasticstrikepriceequaltothebondpriceConvertibleBonds
Convertible33ConvertibleBonds
ConvertibleBondPricingModelsTheoreticalresearchonconvertiblebondpricingwasinitiatedbyIngersoll(1977)andBrennanandSchwartz(1977),whobothappliedthecontingentclaimsapproachtothevaluationofconvertiblebondsIntheirvaluationmodels,theconvertiblebondpricedependsonthefirmvalueastheunderlyingvariableBrennanandSchwartz(1980)extendtheirmodelbyincludingstochasticinterestrates.ThesemodelsrelyheavilyonthetheoryofstochasticprocessesandrequirearelativelyhighlevelofmathematicalsophisticationConvertibleBonds
Convertible34ConvertibleBonds
BinomialModelThepriceofthestockonlycangouptoagivenvalueordowntoagivenvalueBesides,thereisabond(bankaccount)thatwillpayinterestofrConvertibleBonds
BinomialMod35ConvertibleBonds
BinomialModelWeassumeu(up)>d(down)ForBlackandScholeswewillneedd=1/uForconsistencywealsoneedu>(1+r)>dExample:u=1.25;d=0.80;r=10%ConvertibleBonds
BinomialMod36ConvertibleBonds
BinomialModelBasicmodelthatdescribesasimpleworld.Asthenumberofstepsincreases,itbecomesmorerealisticWewillpriceandhedgeanoption:itappliestoanyotherderivativesecurityKey:wehavethesamenumberofstatesandsecurities(completemarkets)BasisforarbitragepricingConvertibleBonds
BinomialMod37ConvertibleBonds
BinomialModelIntroduceanEuropeancalloption:K=110ItmaturesattheendoftheperiodConvertibleBonds
BinomialMod38ConvertibleBonds
BinomialModelWecanreplicatetheoptionwiththestockandthebondConstructaportfoliothatpaysCuinstateuandCdinstatedThepriceofthatportfoliohastobethesameasthepriceoftheoptionOtherwisetherewillbeanarbitrageopportunityConvertibleBonds
BinomialMod39ConvertibleBonds
BinomialModelWebuysharesandinvestBinthebankTheycanbepositive(buyordeposit)ornegative(shortsellorborrow)Wewantthen,Withsolution,ConvertibleBonds
BinomialMod40ConvertibleBonds
BinomialModelInourexample,wegetforstock:And,forbonds:Thecostoftheportfoliois,ConvertibleBonds
BinomialMod41ConvertibleBonds
BinomialModelThepriceoftheEuropeancallmustbe9.09.Otherwise,thereisanarbitrageopportunity.Ifthepriceislowerthan9.09wewouldbuythecallandshortselltheportfolioIfhigher,theoppositeWehavecomputedthepriceandthehedgesimultaneously:
–Wecanconstructacallbybuyingthestockandborrowing–Shortcall:theoppositeConvertibleBonds
BinomialMod42ConvertibleBonds
BinomialModelRememberthat?And?Substituting,ConvertibleBonds
BinomialMod43ConvertibleBonds
BinomialModelAftersomealgebra,?Observethecoefficients,?Positive?Smallerthanone?AdduptooneLikeaprobability.ConvertibleBonds
BinomialMod44ConvertibleBonds
BinomialModelRewrite?Where?Thiswouldbethepricingof:–Ariskneutralinvestor–Withsubjectiveprobabilitiespand(1-p)ConvertibleBonds
BinomialMod45ConvertibleBonds
BinomialModelSupposethefollowingeconomy,?WeintroduceanEuropeancallwithstrikepriceKthatmaturesinthesecondperiodConvertibleBonds
BinomialMod46ConvertibleBonds
BinomialModelThepriceoftheoptionwillbe:?Thereare“twopaths”thatleadtotheintermediatestate(thatexplainsthe“2”)ConvertibleBonds
BinomialMod47ConvertibleBonds
VolatilityintheBinomialModelConvertibleBonds
Volatilityi48ConvertibleBond
ValuationMethodologyGiventhataconvertiblebondisnothingbutanoptionontheunderlyingstock,weexpecttobeabletousethebinomialmodeltopriceitAteachnode,wetest–a.whetherconversionisoptimal–b.whetherthepositionoftheissuercanbeimprovedbycallingthebonds?Itisadynamicprocedure:max(min(Q1,Q2),Q3)),where–Q1=valuegivenbytherollback(neitherconvertednorcalledback)–Q2=callprice–Q3=valueofstocksifconversiontakesplaceConvertibleBond
ValuationMet49ConvertibleBond
ExampleExample
–Weassumethattheunderlyingstockpricetradesat$50.00witha30%annualvolatility–Weconsideraconvertiblebondwitha9monthsmaturity,aconversionratioof20–Theconvertiblebondhasa$1,000.00facevalue,a4%annualcoupon–Wefurtherassumethattherisk-freerateisa(continuouslycompounded)10%,whiletheyieldtomaturityonstraightbondsissuedbythesamecompanyisa(continuouslycompounded)15%–Wealsoassumethatthecallpriceis$1,100.00–Usea3periodsbinomialmodel(t/n=3months,or?year)ConvertibleBond
ExampleExampl50ConvertibleBond
ExampleWehave?Actually(continuouslycompoundedrate)ConvertibleBond
ExampleWehav51ConvertibleBond
ExampleConvertibleBond
Example52ConvertibleBond
ExampleAtnodeG,thebondholderoptimallychoosetoconvertsincewhatisobtainedunderconversion($1,568.31),ishigherthanthepayoffundertheassumptionofnoconversion($1,040.00)ThesameappliestonodeHOntheotherhand,atnodesIandJ,thevalueundertheassumptionofconversionislowerthanifthebondisnotconvertedtoequity–Therefore,bondholdersoptimallychoosenottoconvert,andthepayoffissimplythenominalvalueofthebond,plustheinterestpayments,thatis$1,040.00ConvertibleBond
ExampleAtnod53ConvertibleBond
ExampleWorkingourwaybackwardthetree,weobtainatnodeDthevalueoftheconvertiblebondasthediscountedexpectedvalue,usingrisk-neutralprobabilitiesofthepayoffsatnodesGandH?AtnodeF,thesameprincipleapplies,exceptthatitanberegardedasastandardbond?Wethereforeusetherateofreturnonanonconvertiblebondissuedbythesamecompany,15%ConvertibleBond
ExampleWorkin54ConvertibleBond
ExampleAtnodeE,thesituationismoreinterestingbecausetheconvertiblebondwillendupasastockincaseofanupmove(conversion),andasabondincaseofadownmove(noconversion)Asanapproximateruleofthumb,onemayuseaweightedaverageoftheriskfreeandriskyinterestrateinthecomputation,wheretheweightingisperformedaccordingtothe(risk-neutral)probabilityofanupversusadownmove?ThenthevalueiscomputedasConvertibleBond
ExampleAtnod55ConvertibleBond
ExampleNotethatatnodeD,callingorconvertingisnotrelevantbecauseitdoesnotchangethebondvaluesincethebondisalreadyessentiallyequityAtnodeB,itcanbeshownthattheissuerfindsitoptimaltocallthebondIfthebondisindeedcalledbytheissuer,bondholdersareleftwiththechoicebetweennotconvertingandgettingthecallprice($1,100),orconvertingandgetting$20x58.09=1,161.8$,whichiswhattheyoptimallychooseThisislessthan$1,191.13,thevalueoftheconvertiblebondifitwerenotcalled,andthisispreciselywhyitiscalledbytheissuerEventually,thevalueatnodeA,i.e.,thepresentfairvalueoftheconvertiblebond,iscomputedas$1,115.41ConvertibleBond
ExampleNotet56ConvertibleBonds
ConvertibleArbitrageConvertiblearbitragestrategiesattempttoexploitanomaliesinpricesofcorporatesecuritiesthatareconvertibleintocommonstocksRoughlyspeaking,iftheissuerdoeswell,theconvertiblebondbehaveslikeastock,iftheissuerdoespoorly,theconvertiblebondbehaveslikedistresseddebtConvertiblebondstendstobeunder-pricedbecauseofmarketsegmentation:investorsdiscountsecuritiesthatarelikelytochangetypesConvertiblearbitragehedgefundmanagerstypicallybuy(orsometimessell)thesesecuritiesandthenhedgepartoralloftheassociatedrisksbyshortingthestockConvertibleBonds
Convertible57ConvertibleBonds
MechanismInatypicalconvertiblebondarbitrageposition,thehedgefundisnotonlylongtheconvertiblebondposition,butalsoshortanappropriateamountoftheunderlyingcommonstockThenumberofsharesshortedbythehedgefundmanagerisdesignedtomatchoroffsetthesensitivityoftheconvertiblebondtocommonstockpricechanges–Asthestockpricedecreases,theamountlostonthelongconvertiblepositioniscounteredbytheamountgainedontheshortstockposition–Asthestockpriceincreases,theamountgainedonthelongconvertiblepositioniscounteredbytheamountlostontheshortstockpositionThisisknownasdeltahedgingOver-hedgingissometimesappropriatewhenthereisconcernaboutdefault,astheexcessshortpositionmaypartiallyhedgeagainstareductionincreditqualityConvertibleBonds
MechanismIn58FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES59固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件60固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件61ValueofThree-PeriodOption-FreeBond
C=9,F=100
ValueofThree-PeriodOption-F62CallableBondsandPutableBonds
BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon63CallableandPutableBonds
InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo64CallableandPutableBonds
Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds65CallableBonds
ValuationinaBinomialModel
thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds
Valuationina66固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件67固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件68ValueofPutablebondValueofPutablebond69固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件70Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.
Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.
AlternativeBinomialValuationApproach
Analternativebutequivalent71consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree
consideragainthethree-perio72固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件73固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件74固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件75CallableandPutableBonds
MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds
Mon76CallableandPutableBonds
MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalso
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑設備租賃合同書范例2篇
- 二零二五版法院判決指導下的債務償還與再融資合同3篇
- 二零二五版第5章第5節(jié)合同擔保及供應鏈金融合作協(xié)議3篇
- 二零二五版合同部合同合規(guī)性審查與風險預警合同3篇
- 二零二五年度酒店物業(yè)服務質(zhì)量持續(xù)改進合同3篇
- 二零二五年青少年體育賽事服裝贊助合同3篇
- 二零二五版安防監(jiān)控設備研發(fā)與生產(chǎn)合同3篇
- 二零二五年度物流行業(yè)集體合同協(xié)議范本3篇
- 二零二五版股份質(zhì)押信托產(chǎn)品合作合同3篇
- 二零二五年度高端商品質(zhì)押擔保服務合同模板3篇
- 2024年08月云南省農(nóng)村信用社秋季校園招考750名工作人員筆試歷年參考題庫附帶答案詳解
- 防詐騙安全知識培訓課件
- 心肺復蘇課件2024
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2024-2025學年江蘇省南京市高二上冊期末數(shù)學檢測試卷(含解析)
- 四川省名校2025屆高三第二次模擬考試英語試卷含解析
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- 分紅保險精算規(guī)定
- Proud-of-you中英文歌詞
- 基因的表達與調(diào)控.ppt
評論
0/150
提交評論