固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件_第1頁
固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件_第2頁
固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件_第3頁
固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件_第4頁
固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件_第5頁
已閱讀5頁,還剩111頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES1固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件2固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件3ValueofThree-PeriodOption-FreeBond

C=9,F=100

ValueofThree-PeriodOption-F4CallableBondsandPutableBonds

BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon5CallableandPutableBonds

InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo6CallableandPutableBonds

Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds7CallableBonds

ValuationinaBinomialModel

thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds

Valuationina8固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件9固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件10ValueofPutablebondValueofPutablebond11固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件12Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.

Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.

AlternativeBinomialValuationApproach

Analternativebutequivalent13consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree

consideragainthethree-perio14固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件15固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件16固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件17CallableandPutableBonds

MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds

Mon18CallableandPutableBonds

MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalsobeappliedtothevaluationofallkindsofinterestratesderivativesCallableandPutableBonds

Mon19OptionsonBonds

TerminologyAnoptionisacontractinwhichtheseller(writer)grantsthebuyertherighttopurchasefrom,orsellto,theselleranunderlyingasset(hereabond)ataspecifiedpricewithinaspecifiedperiodoftimeThesellergrantsthisrighttothebuyerinexchangeforacertainsumofmoneycalledtheoptionpriceoroptionpremiumThepriceatwhichtheinstrumentmaybeboughtorsoldiscalledtheexerciseorstrikepriceThedateafterwhichanoptionisvoidiscalledtheexpirationdate–AnAmericanoptionmaybeexercisedanytimeuptoandincludingtheexpirationdate–AEuropeanoptionmaybeexercisedonlyontheexpirationdateOptionsonBonds

TerminologyAn20OptionsonBonds

FactorsthatInfluenceOptionPrices

Currentpriceofunderlyingsecurity–Asthepriceoftheunderlyingbondincreases,thevalueofacalloptionrisesandthevalueofaputoptionfalls?Strikeprice–Call(put)optionsbecomemore(less)valuableastheexercisepricedecreasesTimetoexpiration–ForAmericanoptions,thelongerthetimetoexpiration,thehighertheoptionpricebecauseallexerciseopportunitiesopentotheholderoftheshort-lifeoptionarealsoopentotheholderofthelong-lifeoption?Short-termrisk-freeinterestrate–Priceofcalloptiononbondincreasesandpriceofputoptiononbonddecreasesasshort-terminterestraterises(throughimpactonbondprice)?Expectedvolatilityofyields(orprices)–Astheexpectedvolatilityofyieldsoverthelifeoftheoptionincreases,thepriceoftheoptionwillalsoincreaseOptionsonBonds

Factorsthat21OptionsonBonds

PricingOptionsonlong-termbonds–Interestpaymentsaresimilartodividends–Otherwise,long-termbondsarelikeoptionsonstock:–WecanuseBlack-Scholesasinoptionsondividend-payingequity?Optionsonshort-termbonds–Problem:theyarenotlikeastockbecausetheyquicklyconvergetopar–WecannotdirectlyapplyBlack-Scholes?Othershortcomingsofstandardoptionpricingmodels–Assumptionofaconstantshort-termrateisinappropriateforbondoptions–Assumptionofaconstantvolatilityisalsoinappropriate:asabondmovesclosertomaturity,itspricevolatilitydeclineOptionsonBonds

PricingOption22OptionsonBonds

PricingAsolutiontoavoidtheproblemistoconsideraninterestratemodel,–Thefollowingfigureshowsatreeforthe1-yearrateofinterest(calibratedtothecurrentTS)–Thefigurealsoshowsthevaluesforadiscountbond(par=100)ateachnodeinthetreeOptionsonBonds

PricingAsolu23OptionsonBonds

PricingConsidera2-yearEuropeancallonthis3-yearbondstruckat93.5Startbycomputingthevalueattheendofthetree–Ifbytheendofthe2ndyeartheshort-termratehasrisento7%andthebondistradingat93,theoptionwillexpireworthless–Ifthebondistradingat94(correspondingtoashort-termrateof6%)thecalloptionisworth0.5–Ifthebondistradingat95(short-termrate=5%),thecallisworth1.5WorkingourwaybackwardthetreeOptionsonBonds

PricingConsid24OptionsonBonds

Put-CallParityAssumptionnocouponpaymentsandnoprematureexerciseConsideraportfoliowherewepurchaseonezerocouponbond,oneputEuropeanoption,andsell(write)oneEuropeancalloption(sametimetomaturityTandthesamestrikepriceX)PayoffatdateTOptionsonBonds

Put-CallPari25OptionsonBonds

Put-CallParity–Con’tNomatterwhatstateoftheworldobtainsattheexpirationdate,theportfoliowillbeworthXThus,thepayofffromtheportfolioisrisk-free,andwecandiscountitsvalueattherisk-freeraterWeobtainthecall-putrelationship?ForcouponbondsOptionsonBonds

Put-CallPari26ConvertibleBonds

DefinitionConvertiblesecuritiesareusuallyeitherconvertiblebondsorconvertiblepreferredshareswhicharemostoftenexchangeableintothecommonstockofthecompanyissuingtheconvertiblesecurityBeingdebtorpreferredinstruments,theyhaveanadvantagetothecommonstockincaseofdistressorbankruptcyConvertiblebondsoffertheinvestorthesafetyofafixedincomeinstrumentcoupledwithparticipationintheupsideoftheequitymarketsEssentially,convertiblebondsarebondsthat,attheholder'soption,areconvertibleintoaspecifiednumberofsharesConvertibleBonds

DefinitionCo27ConvertibleBonds

TerminologyConvertiblebonds–Bondholderhasarighttoconvertbondforpre-specifiednumberofshareofcommonstockTerminology–Convertiblepriceisthepriceoftheconvertiblebond–Bondfloororinvestmentvalueisthepriceofthebondifthereisnoconversionoption–Conversionratioisthenumberofsharesthatisexchangedforabond–Conversionvalue=currentsharepricexconversionratio–Conversionpremium=(convertibleprice–conversionvalue)/conversionvalue

ConvertibleBonds

TerminologyC28ConvertibleBonds

ExamplesExample1:–Currentbondprice=$930–Conversionratio:1bond=30sharescommon–Currentstockprice=$25/share–MarketConversionValue=(30shares)x(25)=$750–ConversionPremium=(930–750)/750=180/750=24%?Example2:AXAConvertibleBond–AXAhasissuedinthe€zoneaconvertiblebondpayinga2.5%couponrateandmaturingon01/01/2014;theconversionratiois4.04–On12/13/2001,thecurrentsharepricewas€24.12andthebid-askconvertiblepricewas156.5971/157.5971–Theconversionvaluewasequalto€97.44=4.04x24.12–Theconversionpremiumcalculatedwiththeaskprice157.5971was61.73%=(157.5791-97.44)/97.44–Theconversionofthebondinto4.04sharescanbeexecutedonanydatebeforethematuritydateConvertibleBonds

ExamplesExam29ConvertibleBonds

UsesFortheissuer–Issuingconvertiblebondsenablesafirmtoobtainbetterfinancialconditions–Couponrateofsuchabondisalwayslowertothatofabulletbondwiththesamecharacteristicsintermsofmaturityandcouponfrequency–Thiscomesdirectlyfromtheconversionadvantagewhichisattachedtothisproduct–BesidestheexchangeofbondsforsharesdiminishestheliabilitiesofthefirmissuerandincreasesinthesametimeitsequitysothatitsdebtcapacityisimprovedFortheconvertiblebondholder–Theconvertiblebondisadefensivesecurity,verysensitivetoariseinthesharepriceandprotectivewhenthesharepricedecreases–Ifthesharepriceincreases,theconvertiblepricewillalsoincrease–Whensharepricedecreases,priceofconvertiblenevergetsbelowthebondfloor,i.e.,thepriceofanotherwiseidenticalbulletbondwithnoconversionoptionConvertibleBonds

UsesForthe30ConvertibleBonds

DeterminantsofConvertibleBondPricesConvertiblebondissimilartoanormalcouponbondplusacalloptionontheunderlyingstock

–Withanimportantdifference:theeffectivestrikepriceofthecalloptionwillvarywiththepriceofthebondConvertiblesecuritiesarepricedasafunctionof

–Thepriceoftheunderlyingstock–Expectedfuturevolatilityofequityreturns–Riskfreeinterestrates–Callprovisions–Supplyanddemandforspecificissues–Issue-specificcorporate/Treasuryyieldspread–Expectedvolatilityofinterestratesandspreads?Thus,thereislargeroomforrelativemis-valuationsConvertibleBonds

Determinants31ConvertibleBonds

ConvertibleBondPriceasaFunctionofStockPriceConvertibleBonds

Convertible32ConvertibleBonds

ConvertibleBondPricingModelApopularmethodforpricingconvertiblebondsisthecomponentmodel–Theconvertiblebondisdividedintoastraightbondcomponentandacalloptionontheconversionprice,withstrikepriceequaltothevalueofthestraightbondcomponent–Thefairvalueofthetwocomponentscanbecalculatedwithstandardformulas,suchasthefamousBlack-Scholesvaluationformula.?Thispricingapproach,however,hasseveraldrawbacks–First,separatingtheconvertibleintoabondcomponentandanoptioncomponentreliesonrestrictiveassumptions,suchastheabsenceofembeddedoptions(callabilityandputability,forinstance,areconvertiblebondfeaturesthatcannotbeconsideredintheaboveseparation)–Second,convertiblebondscontainanoptioncomponentwithastochasticstrikepriceequaltothebondpriceConvertibleBonds

Convertible33ConvertibleBonds

ConvertibleBondPricingModelsTheoreticalresearchonconvertiblebondpricingwasinitiatedbyIngersoll(1977)andBrennanandSchwartz(1977),whobothappliedthecontingentclaimsapproachtothevaluationofconvertiblebondsIntheirvaluationmodels,theconvertiblebondpricedependsonthefirmvalueastheunderlyingvariableBrennanandSchwartz(1980)extendtheirmodelbyincludingstochasticinterestrates.ThesemodelsrelyheavilyonthetheoryofstochasticprocessesandrequirearelativelyhighlevelofmathematicalsophisticationConvertibleBonds

Convertible34ConvertibleBonds

BinomialModelThepriceofthestockonlycangouptoagivenvalueordowntoagivenvalueBesides,thereisabond(bankaccount)thatwillpayinterestofrConvertibleBonds

BinomialMod35ConvertibleBonds

BinomialModelWeassumeu(up)>d(down)ForBlackandScholeswewillneedd=1/uForconsistencywealsoneedu>(1+r)>dExample:u=1.25;d=0.80;r=10%ConvertibleBonds

BinomialMod36ConvertibleBonds

BinomialModelBasicmodelthatdescribesasimpleworld.Asthenumberofstepsincreases,itbecomesmorerealisticWewillpriceandhedgeanoption:itappliestoanyotherderivativesecurityKey:wehavethesamenumberofstatesandsecurities(completemarkets)BasisforarbitragepricingConvertibleBonds

BinomialMod37ConvertibleBonds

BinomialModelIntroduceanEuropeancalloption:K=110ItmaturesattheendoftheperiodConvertibleBonds

BinomialMod38ConvertibleBonds

BinomialModelWecanreplicatetheoptionwiththestockandthebondConstructaportfoliothatpaysCuinstateuandCdinstatedThepriceofthatportfoliohastobethesameasthepriceoftheoptionOtherwisetherewillbeanarbitrageopportunityConvertibleBonds

BinomialMod39ConvertibleBonds

BinomialModelWebuysharesandinvestBinthebankTheycanbepositive(buyordeposit)ornegative(shortsellorborrow)Wewantthen,Withsolution,ConvertibleBonds

BinomialMod40ConvertibleBonds

BinomialModelInourexample,wegetforstock:And,forbonds:Thecostoftheportfoliois,ConvertibleBonds

BinomialMod41ConvertibleBonds

BinomialModelThepriceoftheEuropeancallmustbe9.09.Otherwise,thereisanarbitrageopportunity.Ifthepriceislowerthan9.09wewouldbuythecallandshortselltheportfolioIfhigher,theoppositeWehavecomputedthepriceandthehedgesimultaneously:

–Wecanconstructacallbybuyingthestockandborrowing–Shortcall:theoppositeConvertibleBonds

BinomialMod42ConvertibleBonds

BinomialModelRememberthat?And?Substituting,ConvertibleBonds

BinomialMod43ConvertibleBonds

BinomialModelAftersomealgebra,?Observethecoefficients,?Positive?Smallerthanone?AdduptooneLikeaprobability.ConvertibleBonds

BinomialMod44ConvertibleBonds

BinomialModelRewrite?Where?Thiswouldbethepricingof:–Ariskneutralinvestor–Withsubjectiveprobabilitiespand(1-p)ConvertibleBonds

BinomialMod45ConvertibleBonds

BinomialModelSupposethefollowingeconomy,?WeintroduceanEuropeancallwithstrikepriceKthatmaturesinthesecondperiodConvertibleBonds

BinomialMod46ConvertibleBonds

BinomialModelThepriceoftheoptionwillbe:?Thereare“twopaths”thatleadtotheintermediatestate(thatexplainsthe“2”)ConvertibleBonds

BinomialMod47ConvertibleBonds

VolatilityintheBinomialModelConvertibleBonds

Volatilityi48ConvertibleBond

ValuationMethodologyGiventhataconvertiblebondisnothingbutanoptionontheunderlyingstock,weexpecttobeabletousethebinomialmodeltopriceitAteachnode,wetest–a.whetherconversionisoptimal–b.whetherthepositionoftheissuercanbeimprovedbycallingthebonds?Itisadynamicprocedure:max(min(Q1,Q2),Q3)),where–Q1=valuegivenbytherollback(neitherconvertednorcalledback)–Q2=callprice–Q3=valueofstocksifconversiontakesplaceConvertibleBond

ValuationMet49ConvertibleBond

ExampleExample

–Weassumethattheunderlyingstockpricetradesat$50.00witha30%annualvolatility–Weconsideraconvertiblebondwitha9monthsmaturity,aconversionratioof20–Theconvertiblebondhasa$1,000.00facevalue,a4%annualcoupon–Wefurtherassumethattherisk-freerateisa(continuouslycompounded)10%,whiletheyieldtomaturityonstraightbondsissuedbythesamecompanyisa(continuouslycompounded)15%–Wealsoassumethatthecallpriceis$1,100.00–Usea3periodsbinomialmodel(t/n=3months,or?year)ConvertibleBond

ExampleExampl50ConvertibleBond

ExampleWehave?Actually(continuouslycompoundedrate)ConvertibleBond

ExampleWehav51ConvertibleBond

ExampleConvertibleBond

Example52ConvertibleBond

ExampleAtnodeG,thebondholderoptimallychoosetoconvertsincewhatisobtainedunderconversion($1,568.31),ishigherthanthepayoffundertheassumptionofnoconversion($1,040.00)ThesameappliestonodeHOntheotherhand,atnodesIandJ,thevalueundertheassumptionofconversionislowerthanifthebondisnotconvertedtoequity–Therefore,bondholdersoptimallychoosenottoconvert,andthepayoffissimplythenominalvalueofthebond,plustheinterestpayments,thatis$1,040.00ConvertibleBond

ExampleAtnod53ConvertibleBond

ExampleWorkingourwaybackwardthetree,weobtainatnodeDthevalueoftheconvertiblebondasthediscountedexpectedvalue,usingrisk-neutralprobabilitiesofthepayoffsatnodesGandH?AtnodeF,thesameprincipleapplies,exceptthatitanberegardedasastandardbond?Wethereforeusetherateofreturnonanonconvertiblebondissuedbythesamecompany,15%ConvertibleBond

ExampleWorkin54ConvertibleBond

ExampleAtnodeE,thesituationismoreinterestingbecausetheconvertiblebondwillendupasastockincaseofanupmove(conversion),andasabondincaseofadownmove(noconversion)Asanapproximateruleofthumb,onemayuseaweightedaverageoftheriskfreeandriskyinterestrateinthecomputation,wheretheweightingisperformedaccordingtothe(risk-neutral)probabilityofanupversusadownmove?ThenthevalueiscomputedasConvertibleBond

ExampleAtnod55ConvertibleBond

ExampleNotethatatnodeD,callingorconvertingisnotrelevantbecauseitdoesnotchangethebondvaluesincethebondisalreadyessentiallyequityAtnodeB,itcanbeshownthattheissuerfindsitoptimaltocallthebondIfthebondisindeedcalledbytheissuer,bondholdersareleftwiththechoicebetweennotconvertingandgettingthecallprice($1,100),orconvertingandgetting$20x58.09=1,161.8$,whichiswhattheyoptimallychooseThisislessthan$1,191.13,thevalueoftheconvertiblebondifitwerenotcalled,andthisispreciselywhyitiscalledbytheissuerEventually,thevalueatnodeA,i.e.,thepresentfairvalueoftheconvertiblebond,iscomputedas$1,115.41ConvertibleBond

ExampleNotet56ConvertibleBonds

ConvertibleArbitrageConvertiblearbitragestrategiesattempttoexploitanomaliesinpricesofcorporatesecuritiesthatareconvertibleintocommonstocksRoughlyspeaking,iftheissuerdoeswell,theconvertiblebondbehaveslikeastock,iftheissuerdoespoorly,theconvertiblebondbehaveslikedistresseddebtConvertiblebondstendstobeunder-pricedbecauseofmarketsegmentation:investorsdiscountsecuritiesthatarelikelytochangetypesConvertiblearbitragehedgefundmanagerstypicallybuy(orsometimessell)thesesecuritiesandthenhedgepartoralloftheassociatedrisksbyshortingthestockConvertibleBonds

Convertible57ConvertibleBonds

MechanismInatypicalconvertiblebondarbitrageposition,thehedgefundisnotonlylongtheconvertiblebondposition,butalsoshortanappropriateamountoftheunderlyingcommonstockThenumberofsharesshortedbythehedgefundmanagerisdesignedtomatchoroffsetthesensitivityoftheconvertiblebondtocommonstockpricechanges–Asthestockpricedecreases,theamountlostonthelongconvertiblepositioniscounteredbytheamountgainedontheshortstockposition–Asthestockpriceincreases,theamountgainedonthelongconvertiblepositioniscounteredbytheamountlostontheshortstockpositionThisisknownasdeltahedgingOver-hedgingissometimesappropriatewhenthereisconcernaboutdefault,astheexcessshortpositionmaypartiallyhedgeagainstareductionincreditqualityConvertibleBonds

MechanismIn58FIXED-INCOMESECURITIESLecture9OptionsonBondsandBondswithEmbeddedOptionsFIXED-INCOMESECURITIES59固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件60固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件61ValueofThree-PeriodOption-FreeBond

C=9,F=100

ValueofThree-PeriodOption-F62CallableBondsandPutableBonds

BondwithEmbeddedOptionsCallablebonds–Issuermayrepurchaseatapre-specifiedcallprice–TypicallycalledifinterestratesfallAcallablebondhastwodisadvantagesforaninvestor–Ifitiseffectivelycalled,theinvestorwillhavetoinvestinanotherbondyieldingalowerrate–Acallablebondhastheunpleasantpropertyforaninvestortoappreciatelessthananormalsimilarbondwheninterestratesfall–Therefore,aninvestorwillbewillingtobuysuchabondatalowerpricethanacomparableoption-freebondExamples–TheUKTreasurybondwithcoupon5.5%andmaturitydate09/10/2012canbecalledinfullorpartfrom09/10/2008onatapriceofpounds100–TheUSTreasurybondwithcoupon7.625%andmaturitydate02/15/2007canbecalledoncoupondatesonly,atapriceof$100,from02/15/2002on–SuchabondissaidtobediscretelycallableCallableBondsandPutableBon63CallableandPutableBonds

InstitutionalAspectsPutablebondholdermayretireatapre-specifiedpriceAputablebondallowsitsholdertosellthebondatparvaluepriortomaturityincaseinterestratesexceedthecouponrateoftheissueSo,hewillhavetheopportunitytobuyanewbondatahighercouponrateTheissuerofthisbondwillhavetoissueanotherbondatahighercouponrateiftheputoptionisexercisedHenceaputablebondtradesatahigherpricethanacomparableoption-freebondCallableandPutableBo64CallableandPutableBonds

Yield-to-WorstYield-to-callYear54.54%Year64.61%Year74.66%Year84.69%Year94.72%Yield-to-worstyear104.74%LetusconsiderabondwithanembeddedcalloptiontradingoveritsparvalueThisbondcanberedeemedbyitsissuerpriortomaturity,fromitsfirstcalldateon–Onecancomputeayield-to-callonallpossiblecalldates–Theyield-to-worstisthelowestoftheyield-to-maturityandallyields-to-callExample–10-yearbondbearinganinterestcouponof5%,discretelycallableafter5yearsandtradingat102–Thereare5possiblecalldatesbeforematurity–Yield-to-worstis4.54%CallableandPutableBonds65CallableBonds

ValuationinaBinomialModel

thevalueofthecallablebondisdeterminedbyselectingtheminimumoftheotherwisenoncallablebondorthecallprice,andthenrollingthecallablebondvaluetothecurrentperiod.Recursiveprocedure–Pricecash-flowtobediscountedonperiodn-1istheminimumvalueofthepricecomputedonperiodnandcallpriceonperiodn–AndsoonuntilwegetthepricePofthecallablebondCallableBonds

Valuationina66固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件67固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件68ValueofPutablebondValueofPutablebond69固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件70Analternativebutequivalentapproachistocalculatetheweightedaveragevalueofeachpossiblepathsdefinedbythebinomialprocess.Thisvalueisknownasthetheoreticalvalue.

Thet-periodspotrateisequaltothegeometricaverageofthecurrentandexpectone-periodspotrates.

AlternativeBinomialValuationApproach

Analternativebutequivalent71consideragainthethree-period,9%option-freebondvaluedwithatwo-periodinterestratetree

consideragainthethree-perio72固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件73固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件74固定收益證券chapter09-Options-on-Bonds-and-Bonds-with-Em課件75CallableandPutableBonds

MonteCarloApproachStep1:generatealargenumberofshort-terminterestratepathsStep2:alongeachinterestratepath,thepricePofthebondwithembeddedoptionisrecursivelydeterminedThepriceofthebondiscomputedastheaverageofitspricesalongallinterestratepathsCallableandPutableBonds

Mon76CallableandPutableBonds

MonteCarloApproach-ExamplePriceacallablebondwithannualcoupon4.57%,maturity10years,redemptionvalue100andcallableat100after5yearsPricesofthebondundereachscenario?PriceofthebondisaverageoverallpathsP=1/6(100.43+100.55+99.9+99.76+99.68+100.55)=100.14?TheMonteCarlopricingmethodologycanalso

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論