




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆2.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個3.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-44.如果數(shù)據(jù)x1,x2,…,xn的方差是3,則另一組數(shù)據(jù)2x1,2x2,…,2xn的方差是()A.3 B.6 C.12 D.55.今年我市計劃擴大城區(qū)綠地面積,現(xiàn)有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16006.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結(jié)論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個7.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.8.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×1089.下列計算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x410.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,是矗立在高速公路水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結(jié)果保留根號).12.每一層三角形的個數(shù)與層數(shù)的關系如圖所示,則第2019層的三角形個數(shù)為_____.13.如圖,已知圓柱底面周長為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過點A和點C嵌有一圈金屬絲,則這圈金屬絲的周長最小為_____cm.14.如圖,已知,,則________.15.的相反數(shù)是______,的倒數(shù)是______.16.已知一個多邊形的每一個內(nèi)角都是,則這個多邊形是_________邊形.三、解答題(共8題,共72分)17.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.18.(8分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低1元,其銷量可增加10件.(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數(shù)關系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當x取何值時,商場獲利潤不少于2160元.19.(8分)解方程組20.(8分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數(shù).21.(8分)某學?!爸腔鄯綀@”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.22.(10分)如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.(1)求該拋物線所表示的二次函數(shù)的表達式;(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.23.(12分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖324.如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:由題意得,解得:.故選B.2、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.3、D【解析】
根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大?。?、C【解析】【分析】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,再根據(jù)方差公式進行計算:即可得到答案.【詳解】根據(jù)題意,數(shù)據(jù)x1,x2,…,xn的平均數(shù)設為a,則數(shù)據(jù)2x1,2x2,…,2xn的平均數(shù)為2a,根據(jù)方差公式:=3,則==4×=4×3=12,故選C.【點睛】本題主要考查了方差公式的運用,關鍵是根據(jù)題意得到平均數(shù)的變化,再正確運用方差公式進行計算即可.5、A【解析】試題分析:根據(jù)題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據(jù)長方形的面積計算法則列出方程.考點:一元二次方程的應用.6、B【解析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據(jù)圖像可知當x<1時,y隨x增大而增大,當x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y1,故(4)不正確;根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關系:二次函數(shù)y=ax1+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.
拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.7、C【解析】
根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關定理及性質(zhì)以及一副三角板中各個角的度數(shù)是解題的關鍵.8、C【解析】
科學記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000004=4×10,故選C【點睛】此題考查科學記數(shù)法,難度不大9、D【解析】
先利用合并同類項法則,單項式除以單項式,以及單項式乘以單項式法則計算即可得到結(jié)果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【點睛】本題主要考查了合并同類項法則,單項式除以單項式,單項式乘以單項式法則,正確掌握運算法則是解題關鍵.10、A【解析】
根據(jù)兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關鍵是熟練的掌握兩點之間直線距離最短.二、填空題(本大題共6個小題,每小題3分,共18分)11、一4【解析】
分析:利用特殊三角函數(shù)值,解直角三角形,AM=MD,再用正切函數(shù),利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應用,熟練掌握三角函數(shù)的相關定義以及變形是解題的關鍵.12、2.【解析】
設第n層有an個三角形(n為正整數(shù)),根據(jù)前幾層三角形個數(shù)的變化,即可得出變化規(guī)律“an=2n﹣2”,再代入n=2029即可求出結(jié)論.【詳解】設第n層有an個三角形(n為正整數(shù)),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴當n=2029時,a2029=2×2029﹣2=2.故答案為2.【點睛】本題考查了規(guī)律型:圖形的變化類,根據(jù)圖形中三角形個數(shù)的變化找出變化規(guī)律“an=2n﹣2”是解題的關鍵.13、2【解析】
要求絲線的長,需將圓柱的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.∵圓柱底面的周長為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長最小為2AC=2cm.故答案為2.【點睛】本題考查了平面展開?最短路徑問題,圓柱的側(cè)面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決.14、65°【解析】
根據(jù)兩直線平行,同旁內(nèi)角互補求出∠3,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式計算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點睛】此題考查平行線的性質(zhì),解題關鍵在于利用同旁內(nèi)角互補求出∠3.15、2,【解析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點:倒數(shù);相反數(shù).16、十【解析】
先求出每一個外角的度數(shù),再根據(jù)邊數(shù)=360°÷外角的度數(shù)計算即可.【詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數(shù)是1.故答案為十.【點睛】本題主要考查了多邊形的內(nèi)角與外角的關系,求出每一個外角的度數(shù)是關鍵.三、解答題(共8題,共72分)17、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.18、(1)一天可獲利潤2000元;(2)①每件商品應降價2元或8元;②當2≤x≤8時,商店所獲利潤不少于2160元.【解析】:(1)原來一天可獲利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品應降價2或8元;②觀察圖像可得19、【解析】
將②×3,再聯(lián)立①②消未知數(shù)即可計算.【詳解】解:②得:③①+③得:把代入③得∴方程組的解為【點睛】本題考查二元一次方程組解法,關鍵是掌握消元法.20、(1)AD2=AC?CD.(2)36°.【解析】試題分析:(1)通過計算得到AD2=(2)由AD2=AC?CD,得到BC2設∠A=∠ABD=x,則∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形內(nèi)角和等于180°,解得:x=36°,從而得到結(jié)論.試題解析:(1)∵AD=BC=,∴AD2=(5-1∵AC=1,∴CD=1-5-12=3-(2)∵AD2=AC?CD,∴BC2設∠A=∠ABD=x,則∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考點:相似三角形的判定與性質(zhì).21、(1)75;4;(2)CD=4.【解析】
(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的性質(zhì),解題的關鍵是:(1)利用相似三角形的性質(zhì)求出OD的值;(2)利用勾股定理求出BE、CD的長度.22、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.【解析】
分析:(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.詳解:(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),
將點C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點D坐標為(0,-2),
設直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當m=4時,點P、Q、M均與點B重合,不能構(gòu)成三角形,舍去,
∴m=3,點Q的坐標為(3,2);
②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,
此時m=-1,點Q的坐標為(-1,0);
綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.點睛:本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運用.【詳解】請在此輸入詳解!23、(1);(2);(3)+.【解析】
(1)由等腰直角三角形的性質(zhì)可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YY 1105-2024電動洗胃機
- 私人教練與學員健身成果合同
- 租賃住宅合同范本簡版
- 南京勞動合同模板合同范本(勞務派遣律師定制)
- 資產(chǎn)收購合同
- 歷史文化名城拍攝許可合同
- 廣告宣傳合同范文
- 商品供應合同范本
- 批發(fā)業(yè)渠道管理與拓展考核試卷
- D打印技術在汽車輕量化設計的應用考核試卷
- 2025年湖南環(huán)境生物職業(yè)技術學院單招職業(yè)技能測試題庫及答案一套
- 14 文言文二則 學弈 教學設計-2024-2025學年語文六年級下冊統(tǒng)編版
- Unit 4 Eat Well(大單元教學設計)2024-2025學年七年級英語下冊同步備課系列(人教版2024)
- 2024-2030年中國游戲直播行業(yè)市場深度分析及投資策略研究報告
- 統(tǒng)編版小學語文六年級下冊第四單元《理想和信念》作業(yè)設計
- 2025年春季學期學校工作計劃及安排表
- 化驗班組安全培訓
- 英語-廣東省大灣區(qū)2025屆高三第一次模擬試卷和答案
- 第一課+追求向上向善的道德【中職專用】中職思想政治《職業(yè)道德與法治》高效課堂(高教版2023·基礎模塊)
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題庫及答案
- 教師的五重境界公開課教案教學設計課件案例試卷
評論
0/150
提交評論