版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.全球芯片制造已經(jīng)進(jìn)入10納米到7納米器件的量產(chǎn)時(shí)代.中國(guó)自主研發(fā)的第一臺(tái)7納米刻蝕機(jī),是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.?dāng)?shù)據(jù)0.000000007用科學(xué)記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣102.小帶和小路兩個(gè)人開(kāi)車(chē)從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,小帶和小路兩人車(chē)離開(kāi)A城的距離y(km)與行駛的時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300km;②小路的車(chē)比小帶的車(chē)晚出發(fā)1h,卻早到1h;③小路的車(chē)出發(fā)后2.5h追上小帶的車(chē);④當(dāng)小帶和小路的車(chē)相距50km時(shí),t=或t=.其中正確的結(jié)論有()A.①②③④ B.①②④C.①② D.②③④3.如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.4.如圖,在6×4的正方形網(wǎng)格中,△ABC的頂點(diǎn)均為格點(diǎn),則sin∠ACB=()A. B.2 C. D.5.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F.S△AOF=A.15 B.13 C.12 D.56.如圖,⊙O的直徑AB的長(zhǎng)為10,弦AC長(zhǎng)為6,∠ACB的平分線交⊙O于D,則CD長(zhǎng)為()A.7 B. C. D.97.如圖,在△ABC中,AC=BC,點(diǎn)D在BC的延長(zhǎng)線上,AE∥BD,點(diǎn)ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°8.下列各組單項(xiàng)式中,不是同類(lèi)項(xiàng)的一組是()A.和 B.和 C.和 D.和39.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動(dòng)的時(shí)間如下表所示,關(guān)于“勞動(dòng)時(shí)間”的這組數(shù)據(jù),以下說(shuō)法正確的是()勞動(dòng)時(shí)間(小時(shí))33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.510.一個(gè)多邊形的每個(gè)內(nèi)角都等于120°,則這個(gè)多邊形的邊數(shù)為()A.4 B.5 C.6 D.7二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來(lái)源于《古證復(fù)原的原則》《吳文俊與中國(guó)數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請(qǐng)根據(jù)上圖完成這個(gè)推論的證明過(guò)程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.12.如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=1DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結(jié)論的是_____.13.對(duì)于任意非零實(shí)數(shù)a、b,定義運(yùn)算“”,使下列式子成立:,,,,…,則ab=.14.如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫(xiě)序號(hào)).15.已知整數(shù)k<5,若△ABC的邊長(zhǎng)均滿(mǎn)足關(guān)于x的方程,則△ABC的周長(zhǎng)是.16.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,2),則b的值為_(kāi)____.17.如圖,點(diǎn)P的坐標(biāo)為(2,2),點(diǎn)A,B分別在x軸,y軸的正半軸上運(yùn)動(dòng),且∠APB=90°.下列結(jié)論:①PA=PB;②當(dāng)OA=OB時(shí)四邊形OAPB是正方形;③四邊形OAPB的面積和周長(zhǎng)都是定值;④連接OP,AB,則AB>OP.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過(guò)點(diǎn)C作BD的平行線,過(guò)點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.19.(5分)如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過(guò)D作DFAB于點(diǎn)F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長(zhǎng).20.(8分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.求坡底C點(diǎn)到大樓距離AC的值;求斜坡CD的長(zhǎng)度.21.(10分)在△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問(wèn)題開(kāi)始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱(chēng)知識(shí),以AB為對(duì)稱(chēng)軸構(gòu)造△ABD的軸對(duì)稱(chēng)圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問(wèn)題.請(qǐng)結(jié)合小聰研究問(wèn)題的過(guò)程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問(wèn)題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);在原問(wèn)題中,過(guò)點(diǎn)A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請(qǐng)直接寫(xiě)出線段BE的長(zhǎng)為.22.(10分)如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C測(cè)得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.(1)求A,B兩點(diǎn)間的距離(結(jié)果精確到0.1km).(2)當(dāng)運(yùn)載火箭繼續(xù)直線上升到D處,雷達(dá)站測(cè)得其仰角為56°,求此時(shí)雷達(dá)站C和運(yùn)載火箭D兩點(diǎn)間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.1.)23.(12分)如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時(shí),△AEF的面積最大?24.(14分)計(jì)算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、C【解析】
本題根據(jù)科學(xué)記數(shù)法進(jìn)行計(jì)算.【詳解】因?yàn)榭茖W(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學(xué)記數(shù)法法可表示為7×,故選C.【點(diǎn)睛】本題主要考察了科學(xué)記數(shù)法,熟練掌握科學(xué)記數(shù)法是本題解題的關(guān)鍵.2、C【解析】
觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車(chē)離開(kāi)A城的距離y與時(shí)間t的關(guān)系式,可求得兩函數(shù)圖象的交點(diǎn),可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時(shí)間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時(shí)3h,即比小帶早到1h,∴①②都正確;設(shè)小帶車(chē)離開(kāi)A城的距離y與t的關(guān)系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設(shè)小路車(chē)離開(kāi)A城的距離y與t的關(guān)系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點(diǎn)橫坐標(biāo)為t=2.5,此時(shí)小路出發(fā)時(shí)間為1.5h,即小路車(chē)出發(fā)1.5h后追上甲車(chē),∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當(dāng)100-40t=50時(shí),可解得t=,當(dāng)100-40t=-50時(shí),可解得t=,又當(dāng)t=時(shí),y小帶=50,此時(shí)小路還沒(méi)出發(fā),當(dāng)t=時(shí),小路到達(dá)B城,y小帶=250.綜上可知當(dāng)t的值為或或或時(shí),兩車(chē)相距50km,∴④不正確.故選C.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,掌握一次函數(shù)圖象的意義是解題的關(guān)鍵,特別注意t是甲車(chē)所用的時(shí)間.3、C【解析】
設(shè)B′C′與CD的交點(diǎn)為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對(duì)應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計(jì)算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點(diǎn)為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點(diǎn).4、C【解析】
如圖,由圖可知BD=2、CD=1、BC=,根據(jù)sin∠BCA=可得答案.【詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【點(diǎn)睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握正弦函數(shù)的定義和勾股定理.5、A【解析】
過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過(guò)解直角三角形找出點(diǎn)A的坐標(biāo),再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進(jìn)而依據(jù)點(diǎn)A的坐標(biāo)得到k的值.【詳解】過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.設(shè)OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點(diǎn)A的坐標(biāo)為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點(diǎn)A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點(diǎn)評(píng)】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是利用S△AOF=12S菱形OBCA6、B【解析】
作DF⊥CA,交CA的延長(zhǎng)線于點(diǎn)F,作DG⊥CB于點(diǎn)G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長(zhǎng)線上,作DG⊥CB于點(diǎn)G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.7、A【解析】
根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.8、A【解析】
如果兩個(gè)單項(xiàng)式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱(chēng)這兩個(gè)單項(xiàng)式為同類(lèi)項(xiàng).【詳解】根據(jù)題意可知:x2y和2xy2不是同類(lèi)項(xiàng).故答案選:A.【點(diǎn)睛】本題考查了單項(xiàng)式與多項(xiàng)式,解題的關(guān)鍵是熟練的掌握單項(xiàng)式與多項(xiàng)式的相關(guān)知識(shí)點(diǎn).9、A【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個(gè)人,∴第4個(gè)人的勞動(dòng)時(shí)間為中位數(shù),所以中位數(shù)為4,故選A.【點(diǎn)睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會(huì)出錯(cuò).10、C【解析】試題解析:∵多邊形的每一個(gè)內(nèi)角都等于120°,∴多邊形的每一個(gè)外角都等于180°-120°=10°,∴邊數(shù)n=310°÷10°=1.故選C.考點(diǎn):多邊形內(nèi)角與外角.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對(duì)角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點(diǎn)睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用矩形的對(duì)角線把矩形分成面積相等的兩部分這個(gè)性質(zhì),屬于中考??碱}型.12、①②③【解析】
根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過(guò)證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.
理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設(shè)BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯(cuò)誤.理由:∵S△GCE=GC?CE=×1×4=6
∵GF=1,EF=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=1:2,
∴S△GFC=×6=≠1.
故④不正確.
∴正確的個(gè)數(shù)有1個(gè):①②③.故答案為①②③【點(diǎn)睛】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,平行線的判定,三角形的面積計(jì)算,有一定的難度.13、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。14、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項(xiàng)①錯(cuò)誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項(xiàng)②正確;由AB是直徑,則∠ACQ=90°,如果能說(shuō)明P是斜邊AQ的中點(diǎn),那么P也就是這個(gè)直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點(diǎn)P是△ACQ的外心,選項(xiàng)③正確.則正確的選項(xiàng)序號(hào)有②③.故答案為②③.考點(diǎn):1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).15、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長(zhǎng)均滿(mǎn)足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長(zhǎng)為2、2、2或4、4、4或4、4、2.∴△ABC的周長(zhǎng)為6或12或1.考點(diǎn):一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類(lèi)思想的應(yīng)用.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?6、3【解析】
把點(diǎn)(1,2)代入解析式解答即可.【詳解】解:把點(diǎn)(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點(diǎn)睛】本題考查的是一次函數(shù)的圖象點(diǎn)的關(guān)系,關(guān)鍵是把點(diǎn)(1,2)代入解析式解答.17、①②【解析】
過(guò)P作PM⊥y軸于M,PN⊥x軸于N,得出四邊形PMON是正方形,推出OM=OM=ON=PN=1,證△APM≌△BPN,可對(duì)①進(jìn)行判斷,推出AM=BN,求出OA+OB=ON+OM=2,當(dāng)當(dāng)OA=OB時(shí),OA=OB=1,然后可對(duì)②作出判斷,由△APM≌△BPN可對(duì)四邊形OAPB的面積作出判斷,由OA+OB=2,然后依據(jù)AP和PB的長(zhǎng)度變化情況可對(duì)四邊形OAPB的周長(zhǎng)作出判斷,求得AB的最大值以及OP的長(zhǎng)度可對(duì)④作出判斷.【詳解】過(guò)P作PM⊥y軸于M,PN⊥x軸于N
∵P(1,1),
∴PN=PM=1.
∵x軸⊥y軸,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,則四邊形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正確.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
當(dāng)OA=OB時(shí),OA=OB=1,則點(diǎn)A、B分別與點(diǎn)M、N重合,此時(shí)四邊形OAPB是正方形,故②正確.
∵△MPA≌△NPB,
∴四邊形OAPB的面積=四邊形AONP的面積+△PNB的面積=四邊形AONP的面積+△PMA的面積=正方形PMON的面積=2.
∵OA+OB=2,PA=PB,且PA和PB的長(zhǎng)度會(huì)不斷的變化,故周長(zhǎng)不是定值,故③錯(cuò)誤.
,∵∠AOB+∠APB=180°,
∴點(diǎn)A、O、B、P共圓,且AB為直徑,所以
AB≥OP,故④錯(cuò)誤.
故答案為:①②.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,坐標(biāo)與圖形性質(zhì),正方形的性質(zhì)的應(yīng)用,關(guān)鍵是推出AM=BN和推出OA+OB=OM+ON三、解答題(共7小題,滿(mǎn)分69分)18、(1)證明見(jiàn)解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對(duì)角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關(guān)鍵.19、(1)證明過(guò)程見(jiàn)解析;(2)【解析】
(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結(jié)合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質(zhì)得出AF和DF的長(zhǎng)度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長(zhǎng)度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點(diǎn):(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定20、(1)坡底C點(diǎn)到大樓距離AC的值為20米;(2)斜坡CD的長(zhǎng)度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長(zhǎng)即可;(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點(diǎn)到大樓距離AC的值是20米.(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長(zhǎng)度為(80-120)米.點(diǎn)睛:此題考查了解直角三角形-仰角俯角問(wèn)題,坡度坡角問(wèn)題,熟練掌握勾股定理是解本題的關(guān)鍵.21、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問(wèn)題.(1)當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類(lèi)似(1).(3)第①種情況:當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類(lèi)似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時(shí),如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類(lèi)似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當(dāng)60°<α<110°時(shí),如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當(dāng)0°<α<60°時(shí),如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《21 古詩(shī)三首(山居秋暝、楓橋夜泊、長(zhǎng)相思)》說(shuō)課稿-2024-2025學(xué)年統(tǒng)編版語(yǔ)文五年級(jí)上冊(cè)
- Bridging Unit 3 Welcome.大單元說(shuō)課稿 2024-2025學(xué)年魯教版(五四學(xué)制)(2024)六年級(jí)英語(yǔ)上冊(cè)
- 2025年房屋租賃中介合同6篇
- 2025年度海洋工程船舶維修與保養(yǎng)服務(wù)合同書(shū)6篇
- Unit 2 My family(Period 1)(說(shuō)課稿)-2023-2024學(xué)年人教大同版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 2024配套人民幣個(gè)人消費(fèi)貸款合同3篇
- 第一單元綜合探究 學(xué)會(huì)科學(xué)思維提升思維品質(zhì) 說(shuō)課稿-2023-2024學(xué)年高中政治統(tǒng)編版選擇性必修三邏輯與思維
- 2025年房地產(chǎn)合作開(kāi)發(fā)合同12篇
- Unit 8Reading2 說(shuō)課稿 - 2024-2025學(xué)年譯林版英語(yǔ)七年級(jí)上冊(cè)
- 2025年戲劇演員聘請(qǐng)協(xié)議3篇
- 外配處方章管理制度
- 2025年四川長(zhǎng)寧縣城投公司招聘筆試參考題庫(kù)含答案解析
- 駱駝祥子-(一)-劇本
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
- 全國(guó)醫(yī)院數(shù)量統(tǒng)計(jì)
- 【MOOC】PLC技術(shù)及應(yīng)用(三菱FX系列)-職教MOOC建設(shè)委員會(huì) 中國(guó)大學(xué)慕課MOOC答案
- 2023七年級(jí)英語(yǔ)下冊(cè) Unit 3 How do you get to school Section A 第1課時(shí)(1a-2e)教案 (新版)人教新目標(biāo)版
- 泌尿科主任述職報(bào)告
- 中國(guó)的世界遺產(chǎn)智慧樹(shù)知到期末考試答案2024年
- PEP-3心理教育量表-評(píng)估報(bào)告
- 控制性詳細(xì)規(guī)劃編制項(xiàng)目競(jìng)爭(zhēng)性磋商招標(biāo)文件評(píng)標(biāo)辦法、采購(gòu)需求和技術(shù)參數(shù)
評(píng)論
0/150
提交評(píng)論