版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepowertoacceptaprojectPropertiesDecision-makingauthorityisnFigure12.15:Polyarchy
Project
Office1
Office2
Accept
no
1-p
no
1-p
Reject
p
yes
yes
p
Accept
Figure12.15:PolyarchyProjeConclusionApolyarchyisgoodatacceptingprojects,whereashierarchiesaregoodatrejectingprojects.ConclusionApolyarchyisgoodWhichorganisationalchoiceminimiseserrorsofjudgement?WhichorganisationalchoicemiTherearetwotypesofmistakes:TypeIerrorsTypeIIerrorsTherearetwotypesofmistakeFigure12.13:type-Iversustype-IIerrors
?
accept
reject
accept
?
reject
good
project
bad
project
?
desirable
decision
type-
I
error
type-
II
error
desirable
decision
Figure12.13:type-IversustyChooseapolyarchywhentype-Ierrorsarerelativelyexpensive.Ahierarchyisdesirablewhentype-IIerrorsarerelativelyexpensive.Results
Chooseapolyarchywhentype-IEvolutionaryapproachesEvolutionaryapproachesEvolutionarypsychologyClaimsregardingthecognitivecapacitiesofpeoplehavetobebasedinevolutionarybiology.EvolutionarypsychologyClaimsResult1:
GlobalrationalityItisunlikelythatglobalrationalityemergesoutofanevolutionaryprocess.Result1:
GlobalrationalityIReason1:Adaptiveoroptimalbehaviourdependstoalargeextentonthespecificsituation.Reason2:Addingmoredimensionspreventsthatevenlimitedgeneralsystemswillfunctionwell.Thisisduetocombinatorialexplosion.Reason1:Thisresultsin:modularityhierarchyparallellisationThisresultsin:Reason3:Generalsystemsdonotperformwellinspecificsituationsbecausecrucialdetailsarenottakenintoaccount.Reason3:Result2:
formfollowsfunctionThepropertiesofanevolvedsystem/mechanism/formreflectthestructureoftheproblemthathastobedealtwith.Thenatureoftheproblemdirectsthereforethekindofsolutionthatisformulated.Result2:
formfollowsfunctiExample1:
Structurefollowsstrategy(Chandler,1962)Example1:
StructurefollowsNaturalselectionresultsinmechanismsgearedtowardsusinginformationintheformitispresented.NaturalselectionresultsinmChapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepow
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 紙袋制作課件教學(xué)課件
- 防蜇課件教學(xué)課件
- 獲獎(jiǎng) 課件教學(xué)課件
- 2024年度農(nóng)產(chǎn)品收購(gòu)合同
- 2024年企業(yè)安全評(píng)價(jià)與咨詢(xún)服務(wù)合同
- 2024年度空氣能設(shè)備安裝與驗(yàn)收合同
- 2024國(guó)際快遞服務(wù)全面合作協(xié)議
- 2024樁基工程施工合同范本樁基工程施工合同
- 2024年企業(yè)合并收購(gòu)協(xié)議
- 2024個(gè)人租房的合同模板范本
- 《先輩們唱過(guò)的歌》 單元作業(yè)設(shè)計(jì)
- 民俗習(xí)慣的司法適用
- 實(shí)驗(yàn)室安全準(zhǔn)入教育(通識(shí)A課程)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫(kù)2023年
- 《繪畫(huà)的構(gòu)圖》課件
- 三年級(jí)數(shù)學(xué)上冊(cè)第三單元《測(cè)量》課件
- 高支模施工難點(diǎn)
- 大學(xué)生勞動(dòng)教育-合肥工業(yè)大學(xué)中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫(kù)2023年
- 訴訟前民事調(diào)解委托書(shū)
- 孩子探視權(quán)起訴書(shū)
- 國(guó)家開(kāi)放大學(xué)一網(wǎng)一平臺(tái)電大《當(dāng)代中國(guó)政治制度》形考任務(wù)1-4網(wǎng)考題庫(kù)及答案
- 無(wú)人機(jī)基礎(chǔ) 教案
評(píng)論
0/150
提交評(píng)論