八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思_第1頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思_第2頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思_第3頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思_第4頁(yè)
八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思精品范文資料文檔精品范文資料文檔八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思精品范文資料文檔八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思《八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版反思》這是一篇八年級(jí)上冊(cè)數(shù)學(xué)教案,本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。八年級(jí)數(shù)學(xué)上冊(cè)14.2勾股定理的應(yīng)用教學(xué)設(shè)計(jì)華東師大版14.2勾股定理的應(yīng)用(2)教學(xué)目標(biāo):1.會(huì)用勾股定理解決較綜合的問題.2.樹立數(shù)形結(jié)合的思想.教學(xué)重點(diǎn)勾股定理的綜合應(yīng)用.教學(xué)難點(diǎn)勾股定理的綜合應(yīng)用.教學(xué)過程一、課前預(yù)習(xí)1.等腰三角形底邊上的高為8,周長(zhǎng)為32,則該等腰三角形面積為_______.解:設(shè)底邊長(zhǎng)為2x,則腰長(zhǎng)為16-x,有(16-x)2=82+x2,x=6,there4;S=times;2xtimes;8=48.2.如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形:(1)使三角形的三邊長(zhǎng)分別為3.、(在圖甲中畫一個(gè)即可);(2)使三角形為鈍角三角形且面積為4(在圖乙中畫一個(gè)即可).二、合作探究問題探究1:邊長(zhǎng)為無理數(shù)例1:如圖,在3times;3的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,請(qǐng)?jiān)诮o定網(wǎng)格中按下列要求畫出圖形:(1)畫出所有從點(diǎn)A出發(fā),另一端點(diǎn)在格點(diǎn)(即小正方形的頂點(diǎn))上,且長(zhǎng)度為的線段;(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.教師分析只需利用勾股定理看哪一個(gè)矩形的對(duì)角線滿足要求.解:(1)如下圖中,AB.AC.AE.AD的長(zhǎng)度均為.(2)如下圖中△ABC.△ABE.△ABD.△ACE.△ACD.△AED就是所要畫的等腰三角形.問題探究2:不規(guī)則圖形面積的求法例2:如圖,已知CD=6m,AD=8m,ang;ADC=90deg;,BC=24m,AB=26m.求圖中陰影部分的面積.解:在Rt△ADC中,AC=AD+CD=6+8=100(勾股定理),there4;AC=10m.∵AC+BC=10+24=676=AB,there4;△ACB為直角三角形(如果三角形的三邊長(zhǎng)A.B.c有關(guān)系:a+b=c,那么這個(gè)三角形是直角三角形),there4;S陰影部分=S△ACB-S△ACD=times;10times;24-times;6times;8=96(m).三、課堂鞏固(1)四年一度的國(guó)際數(shù)學(xué)家大會(huì)于2002年8月20日在北京召開.大會(huì)會(huì)標(biāo)如圖甲,它是由四個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形.若大正方形的面積為13,每個(gè)直角三角形兩直角邊的和是5,求中間小正方形的面積;(2)現(xiàn)有一張長(zhǎng)為6.5cm,寬為2cm的紙片,如圖乙,請(qǐng)你將它分割成6塊,再拼合成一個(gè)正方形.解:(1)設(shè)較長(zhǎng)直角邊為b,較短直角邊為a,則小正方形的邊長(zhǎng)為:a-b.而斜邊即為大正方形邊長(zhǎng),且其平方為13,即a2+b2=13①,由a+b=5,兩邊平方,得a2+b2+2ab=25.將①代入,得2ab=12.所以(b-a)2=b2+a2-2ab=13-12=1.即小正方形面積為1;(2)由(2)題中矩形面積為6.5times;2=13與(1)題正方形面積相等,仿照甲圖可得,算出其中a=2,b=3,如圖.四、課堂小結(jié)1.我們學(xué)習(xí)了什么2.還有什么疑惑嗎五、課后作業(yè)習(xí)題14.2勾股定理的應(yīng)用(1)教學(xué)目標(biāo)1.知識(shí)目標(biāo)(1)了解勾股定理的作用是在直角三角形中已知兩邊求第三邊;而勾股逆定理的作用是由三角形邊的關(guān)系得出三角形是直角三角形.(2)掌握勾股定理及其逆定理,運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的長(zhǎng)度計(jì)算.2.過程性目標(biāo)(1)讓學(xué)生親自經(jīng)歷卷折圓柱.(2)讓學(xué)生在親自經(jīng)歷卷折圓柱中認(rèn)識(shí)到圓柱的側(cè)面展開圖是一個(gè)長(zhǎng)方形(矩形).(3)讓學(xué)生通過觀察、實(shí)驗(yàn)、歸納等手段,培養(yǎng)其將實(shí)際問題轉(zhuǎn)化為應(yīng)用勾股定理解直角三角形的數(shù)學(xué)問題的能力.教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):勾股定理的應(yīng)用.教學(xué)難點(diǎn):將實(shí)際問題轉(zhuǎn)化為應(yīng)用勾股定理及其逆定理解直角三角形的數(shù)學(xué)問題.原因分析:1.例1中學(xué)生因?yàn)槠淇臻g想象能力有限,很難想到螞蟻爬行的路徑是什么,為此通過制作圓柱模型解決難題.2.例2中學(xué)生難找到要計(jì)算的具體線段.通過多媒體演示來啟發(fā)學(xué)生的思維.教學(xué)突破點(diǎn):突出重點(diǎn)的教學(xué)策略:通過回憶復(fù)習(xí)、例題、小結(jié)等,突出重點(diǎn)勾股定理及其逆定理的應(yīng)用,教學(xué)過程教學(xué)過程設(shè)計(jì)意圖復(fù)習(xí)部分復(fù)習(xí)練習(xí),引出課題例1:在Rt△ABC中,兩條直角邊分別為3,4,求斜邊c的值【答案】c=5.例2:在Rt△ABC中,一直角邊分別為5,斜邊為13,求另一直角邊的長(zhǎng)是多少【答案】另一直角邊的長(zhǎng)是12.通過簡(jiǎn)單計(jì)算題的練習(xí),幫助學(xué)生回顧勾股定理,加深定理的記憶理解,為新課作好準(zhǔn)備小結(jié):在上面兩個(gè)小題中,我們應(yīng)用了勾股定理:在Rt△ABC中,若ang;C=90deg;,則c2=a2+b2.加深定理的記憶理解,突出定理的作用.新課講解勾股定理能解決直角三角形的許多問題,因此在現(xiàn)實(shí)生活和數(shù)學(xué)中有著廣泛的應(yīng)用.例3:如圖,一圓柱體的底面周長(zhǎng)為20cm,高AB為4cm,BC是上底面的直徑.一只螞蟻從點(diǎn)A出發(fā),沿著圓柱的側(cè)面爬行到點(diǎn)C,試求出爬行的最短路程.【解析】螞蟻實(shí)際上是在圓柱的半個(gè)側(cè)面內(nèi)爬行.大家用一張白紙卷折圓柱成圓柱形狀,標(biāo)出A.B.C.D各點(diǎn),然后打開,螞蟻在圓柱上爬行的距離,與在平面紙上的距離一樣.AC之間的最短距離是什么根據(jù)是什么(學(xué)生回答)根據(jù)兩點(diǎn)之間,線段最短,所求的最短路程就是側(cè)面展開圖矩形ABCD對(duì)角線AC之長(zhǎng).我們可以利用勾股定理計(jì)算出AC的長(zhǎng).解:如圖,在Rt△ABC中,BC=底面周長(zhǎng)的一半=10cm,there4;AC===asymp;10.77(cm)(勾股定理).答:最短路程約為10.77cm.例4:一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖的某工廠,問這輛卡車能否通過該工廠的廠門【解析】由于廠門寬度足夠,所以卡車能否通過,只要看當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH.如圖所示,點(diǎn)D在離廠門中線0.8米處,且CDperp;AB,與地面交于H.解:在Rt△OCD中,由勾股定理得CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡車能通過廠門.通過動(dòng)手作模型,培養(yǎng)學(xué)生的動(dòng)手、動(dòng)腦能力,解決學(xué)生空間想像能力有限,想不到螞蟻爬行的路徑的難題,從而突破難點(diǎn).由學(xué)生回答AC之間的最短距離及根據(jù),有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),喚起與形成新知識(shí)相關(guān)的舊知識(shí),從而使學(xué)生的原認(rèn)知結(jié)構(gòu)對(duì)新知識(shí)的學(xué)習(xí)具有某種召喚力再次提問,突出勾股定理的作用,加深記憶.利用多媒體設(shè)備演示卡車通過廠門正中間時(shí)的過程(在幾何畫板上畫出廠門的形狀,用移動(dòng)的矩形表示卡車,矩形的高低可調(diào)),讓學(xué)生通過觀察,找到需要計(jì)算的線段CH、CD及CD所在的直角三角形OCD,將實(shí)際問題轉(zhuǎn)化為應(yīng)用勾股定理解直角三角形的數(shù)學(xué)問題.小結(jié)本節(jié)課我們學(xué)習(xí)了應(yīng)用勾股定理來解決實(shí)際問題.在實(shí)際當(dāng)中,長(zhǎng)度計(jì)算是一個(gè)基本問題,而長(zhǎng)度計(jì)算中應(yīng)用最多、最基本的就是解直角三角形,利用勾股定理已知兩邊求第三邊,我們要掌握好這一有力工具.課堂練習(xí)練習(xí)1.如圖,從電桿離地面5米處向地面拉一條7米長(zhǎng)的鋼纜,求地面鋼纜固定點(diǎn)A到電桿底部B的距離.【答案】2.現(xiàn)準(zhǔn)備將一塊形為直角三角形的綠地?cái)U(kuò)大,使其仍為直角三角形,兩直角邊同時(shí)擴(kuò)大到原來的兩倍,問斜邊擴(kuò)大到原來的多少倍【答案】2(四)作業(yè):習(xí)題(五)策略分析為防止以上錯(cuò)誤的出現(xiàn),除了講清楚定理,還應(yīng)該強(qiáng)調(diào):1.定理中基本公式中的項(xiàng)都是平方項(xiàng);2.計(jì)算直角邊時(shí)需要將基本公式移項(xiàng)變形,按平方差計(jì)算.3.最后求邊長(zhǎng)時(shí),需要進(jìn)行開平方運(yùn)算.【反思】本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):一、復(fù)習(xí)引入對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)需要知道們的寬、高,還是其他的條件學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。活動(dòng)二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程?;顒?dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么如何作輔助線構(gòu)造這一前提條件在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。二、鞏固練習(xí),熟練新知通過測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的經(jīng)驗(yàn)和感受。在教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論