版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1CHAPTER5
IncompressibleFlowinPipesandChannels
1CHAPTER5
IncompressibleFlow2content5.1SHEARSTRESSANDSKINFRICTIONINPIPES5.2LAMINARFLOWINPIPESANDCHANNELS5.3TURBULENTFLOWINPIPESANDCHANNELS5.4FRICTIONFROMCHANGESINVELOCITYORDIRECTION5.5DESIGNOFPIPESYSTEM***
2content5.1SHEARSTRESSAND35.1SHEARSTRESSANDSKINFRICTIONINPIPES1.Shear-stressdistribution
2.Relationbetweenskinfrictionandwallshear
3.Thefrictionfactor
4.Relationsbetweenskinfrictionparameters
5.Flowinnoncircularchannels35.1SHEARSTRESSANDSKINFR41.Shear-stressdistributionConsiderthesteadyflowoffluidofconstantdensityinfullydevelopedflowthroughahorizontalpipe.41.Shear-stressdistribution5Applymomentumequation(4.42)betweentwofacesofthedisk.(4.42)(5.1)rearranging5Applymomentumequation(4.426SubtractingEq.(5.1)fromEq.(5.2)gives
(5.2)(5.3)also(5.1)6SubtractingEq.(5.1)fromEq7Astraightlinewithsloprwwt7Astraightlinewithsloprww82.RelationbetweenskinfrictionandwallshearWritingBernoulliequationoveradefinitelengthLofthecompletestream.
L82.Relationbetweenskinfric9Eq.(5.2)(5.2)become(5.5)9Eq.(5.2)(5.2)become(5.5)10(5.5)f10(5.5)f113.Thefrictionfactor
------Fanningfrictionfactory
(5.6)------BlasiusorDarcyfrictionfactor113.Thefrictionfactor124.RelationsbetweenskinfrictionparametersTherelationofcommonquantitiesusedtomeasureskinfrictioninpipes.
Pressuredropcausedbyfrictionloss阻力降,Pa(5.7)124.Relationsbetweenskinfr135.Flowinnoncircularchannelsequivalentdiameter
hydraulicradius
135.Flowinnoncircularchann14Flowbetweenparallelplates,whenthedistancebetweenthembismuchsmallerthanthewidthoftheplates
Aannulusbetweentwoconcentricpipes
(5.15)Asquareductwithawidthofsideb
14Flowbetweenparallelplates155.2LAMINARFLOWINPIPESANDCHANNELS1.Laminarflowofnewtonianfluids
2.Hagen-Poiseuilleequation
☆3.Laminarflowofnon-newtonianliquids4.Laminarflowinanannulus
155.2LAMINARFLOWINPIPESA161.LaminarflowofnewtonianfluidsNewtonianfluidisflowinginacircularchannelinlaminarflow.161.Laminarflowofnewtonian17Velocitydistribution
Newton'slaw
(5.13)EliminatingτbyTherefore(5.14)17VelocitydistributionNewton18IntegrationofEq.(5.14)withtheboundaryconditionu=0,r=rwgives
(5.15)Whenr=0(5.16)18IntegrationofEq.(5.14)wi19Theratioofthelocalvelocitytothemaximumvelocity
(5.17)Inlaminarflowthevelocitydistributionwithrespecttotheradiusisaparabola.
19Theratioofthelocalveloc202021Averagevelocity
(5.18)21Averagevelocity(5.18)22(5.19)Theaveragevelocityispreciselyone-halfthemaximumvelocity.22(5.19)Theaveragevelocityi23Kineticenergycorrectionfactor
Momentumcorrectionfactor
23Kineticenergycorrectionfa242.Hagen-Poiseuilleequationtoeliminate(5.7)UsingInEq.5.7242.Hagen-Poiseuilleequation25(5.20)------Hagen-Poiseuilleequation
Comparewith(5.22)ThereforeInlaminarflow,frictionfactorisonlyinfluencedbyRe.25(5.20)------Hagen-Poiseuill26☆3.Laminarflowofnon-newtonianliquids26☆3.Laminarflowofnon-new274.Laminarflowinanannulus
Velocitydistributionforthelaminarflowofanewtonianfluidthroughanannularspace
where=radiusofouterwallofannulus=ratio=radiusofinnerwallofannulus(5.28)274.Laminarflowinanannul28ForannularflowtheReynoldsnumberis(5.29)(5.30)28ForannularflowtheReynold2929305.3TURBULENTFLOWINPIPESANDCHANNELS1.Velocitydistributionforturbulentflow
2.Universalvelocitydistributionequations
3.Limitationsofuniversalvelocitydistributionlaws
4.Flowquantitiesforturbulentflowinsmoothroundpipes305.3TURBULENTFLOWINPIPES315.Relationsbetweenmaximumvelocityandaveragevelocity
6.Effectofroughness
7.Thefrictionfactorchart
☆8.Reynoldsnumbersandfrictionfactorfornon-newtonianfluids
9.Dragreductioninturbulentflow10.Nonisothermalflow
11.Turbulentflowinnoncircularchannels
315.Relationsbetweenmaximum321.VelocitydistributionforturbulentflowFlowinturbulentthroughaclosedchannel
321.Velocitydistributionfor33Viscousstresses粘性應(yīng)力Viscousstress+TurbulentstressTurbulentstressorReynoldstress湍流應(yīng)力or雷諾應(yīng)力viscoussublayer:bufferlayer:turbulentcore:33ViscousstressesViscousstr34viscoussublayer:bufferlayer:turbulentcore:Velocitygradientlargemiddlesmall34viscoussublayer:Velocitygr353536Itiscustomarytoexpressthevelocitydistributioninturbulentflowintermsofdimensionlessparameters
(5.31)Frictionvelocity摩擦速度,m/sFrictiondistance,摩擦距離,m.36Itiscustomarytoexpresst37(5.32)velocityquotient,dimensionless無量綱速度(5.33)dimensionlessdistance,無量綱距離
y=distancefromwalloftube(5.34)37(5.32)velocityquotient,dim382.Universalvelocitydistributionequations通用速度分布方程382.Universalvelocitydistri39viscoussublayer
(5.35)(5.36)fortheviscoussublayer:39viscoussublayer(5.35)(5.3640bufferlayer
:anempiricalequation(5.37)forthebufferzone:40bufferlayer:anempirical41turbulentcore:(5.38)fortheturbulentcore:41turbulentcore:(5.38)fort4242433.Limitationsofuniversalvelocitydistributionlaws
433.Limitationsofuniversal444.Flowquantitiesforturbulentflowinsmoothroundpipes444.Flowquantitiesforturbu45Averagevelocity
(5.46)(5.47)45Averagevelocity(5.46)(5.4746TheReynoldsnumber-frictionfactorlawforsmoothtubes
vonKarmanequation
(5.50)46TheReynoldsnumber-friction47Thekineticenergyandmomentumcorrectionfactors
(5.51)(5.52)47Thekineticenergyandmomen48ForaReynoldsnumberof104,thefrictionfactorforasmoothtubeis0.0079,αis1.084,andβis1.031.
Forexample:ForRe=106thevaluesaref=0.0029,α=1.032,andβ=1.011.
Forturbulentflowtheerrorisusuallyverysmallifαandβareassumedtobeunity48ForaReynoldsnumberof104495.RelationsbetweenmaximumvelocityandaveragevelocityExperimentallymeasuredvaluesofasafunctionoftheReynoldsnumberareshowninFig.5.8,495.Relationsbetweenmaximum5050516.Effectofroughness516.Effectofroughness52kandiscalledtheroughnessparameter粗糙度
.k/Disdefinedasrelativeroughness相對粗糙度.52kandiscalledtheroughnes53Smoothpipe光滑管Roughpipe粗糙管hydraulicallysmoothpipe:hydraulicallyroughpipe:DrawncopperandbrasspipeOld,foul,andcorrodedpipe53Smoothpipe光滑管hydraulically54Fig.5.10givetheroughnessparameterofseveralmaterialofnewpipe.(p112)54Fig.5.10givetheroughness55TheeffectofroughnessonthefrictionfactorRoughnesshasnoappreciableeffectonthefrictionfactorforlaminarflowunlesskistoolarge.55Theeffectofroughnessont56Fromdimensionalanalysis.
f
isafunctionofbothReandtherelativeroughnessk/D
56Fromdimensionalanalysis.f577.ThefrictionfactorchartFromdimensionalanalysisf
isafunctionofbothReandtherelativeroughnessk/D
Frictionfactorchartisalog-logplotoffversusRe.
577.Thefrictionfactorchart585859二、管內(nèi)湍流的摩擦系數(shù)59二、管內(nèi)湍流的摩擦系數(shù)6060616162LaminarflowBufferTurbulenceCompleteturbulence(完全湍流區(qū),阻力平方區(qū))62Laminarflow63Laminarflow63Laminarflow64Turbulentflow:forhydraulicallysmoothpipeCoburnequationBlasiusequationThisappliesoverRefromabout50,000to1x106.ApplicableoverRefrom3,000to3x106
64Turbulentflow:forhydrauli65Completeturbulentflow:Turbulentflow:forroughpipe65Completeturbulentflow:Turb66☆8.Reynoldsnumbersandfrictionfactorfornon-newtonianfluidsforpseudoplasticfluidsandlaminarflow
(5.56)66☆8.Reynoldsnumbersandfr67CHAPTER5
IncompressibleFlowinPipesandChannels
1CHAPTER5
IncompressibleFlow68content5.1SHEARSTRESSANDSKINFRICTIONINPIPES5.2LAMINARFLOWINPIPESANDCHANNELS5.3TURBULENTFLOWINPIPESANDCHANNELS5.4FRICTIONFROMCHANGESINVELOCITYORDIRECTION5.5DESIGNOFPIPESYSTEM***
2content5.1SHEARSTRESSAND695.1SHEARSTRESSANDSKINFRICTIONINPIPES1.Shear-stressdistribution
2.Relationbetweenskinfrictionandwallshear
3.Thefrictionfactor
4.Relationsbetweenskinfrictionparameters
5.Flowinnoncircularchannels35.1SHEARSTRESSANDSKINFR701.Shear-stressdistributionConsiderthesteadyflowoffluidofconstantdensityinfullydevelopedflowthroughahorizontalpipe.41.Shear-stressdistribution71Applymomentumequation(4.42)betweentwofacesofthedisk.(4.42)(5.1)rearranging5Applymomentumequation(4.4272SubtractingEq.(5.1)fromEq.(5.2)gives
(5.2)(5.3)also(5.1)6SubtractingEq.(5.1)fromEq73Astraightlinewithsloprwwt7Astraightlinewithsloprww742.RelationbetweenskinfrictionandwallshearWritingBernoulliequationoveradefinitelengthLofthecompletestream.
L82.Relationbetweenskinfric75Eq.(5.2)(5.2)become(5.5)9Eq.(5.2)(5.2)become(5.5)76(5.5)f10(5.5)f773.Thefrictionfactor
------Fanningfrictionfactory
(5.6)------BlasiusorDarcyfrictionfactor113.Thefrictionfactor784.RelationsbetweenskinfrictionparametersTherelationofcommonquantitiesusedtomeasureskinfrictioninpipes.
Pressuredropcausedbyfrictionloss阻力降,Pa(5.7)124.Relationsbetweenskinfr795.Flowinnoncircularchannelsequivalentdiameter
hydraulicradius
135.Flowinnoncircularchann80Flowbetweenparallelplates,whenthedistancebetweenthembismuchsmallerthanthewidthoftheplates
Aannulusbetweentwoconcentricpipes
(5.15)Asquareductwithawidthofsideb
14Flowbetweenparallelplates815.2LAMINARFLOWINPIPESANDCHANNELS1.Laminarflowofnewtonianfluids
2.Hagen-Poiseuilleequation
☆3.Laminarflowofnon-newtonianliquids4.Laminarflowinanannulus
155.2LAMINARFLOWINPIPESA821.LaminarflowofnewtonianfluidsNewtonianfluidisflowinginacircularchannelinlaminarflow.161.Laminarflowofnewtonian83Velocitydistribution
Newton'slaw
(5.13)EliminatingτbyTherefore(5.14)17VelocitydistributionNewton84IntegrationofEq.(5.14)withtheboundaryconditionu=0,r=rwgives
(5.15)Whenr=0(5.16)18IntegrationofEq.(5.14)wi85Theratioofthelocalvelocitytothemaximumvelocity
(5.17)Inlaminarflowthevelocitydistributionwithrespecttotheradiusisaparabola.
19Theratioofthelocalveloc862087Averagevelocity
(5.18)21Averagevelocity(5.18)88(5.19)Theaveragevelocityispreciselyone-halfthemaximumvelocity.22(5.19)Theaveragevelocityi89Kineticenergycorrectionfactor
Momentumcorrectionfactor
23Kineticenergycorrectionfa902.Hagen-Poiseuilleequationtoeliminate(5.7)UsingInEq.5.7242.Hagen-Poiseuilleequation91(5.20)------Hagen-Poiseuilleequation
Comparewith(5.22)ThereforeInlaminarflow,frictionfactorisonlyinfluencedbyRe.25(5.20)------Hagen-Poiseuill92☆3.Laminarflowofnon-newtonianliquids26☆3.Laminarflowofnon-new934.Laminarflowinanannulus
Velocitydistributionforthelaminarflowofanewtonianfluidthroughanannularspace
where=radiusofouterwallofannulus=ratio=radiusofinnerwallofannulus(5.28)274.Laminarflowinanannul94ForannularflowtheReynoldsnumberis(5.29)(5.30)28ForannularflowtheReynold9529965.3TURBULENTFLOWINPIPESANDCHANNELS1.Velocitydistributionforturbulentflow
2.Universalvelocitydistributionequations
3.Limitationsofuniversalvelocitydistributionlaws
4.Flowquantitiesforturbulentflowinsmoothroundpipes305.3TURBULENTFLOWINPIPES975.Relationsbetweenmaximumvelocityandaveragevelocity
6.Effectofroughness
7.Thefrictionfactorchart
☆8.Reynoldsnumbersandfrictionfactorfornon-newtonianfluids
9.Dragreductioninturbulentflow10.Nonisothermalflow
11.Turbulentflowinnoncircularchannels
315.Relationsbetweenmaximum981.VelocitydistributionforturbulentflowFlowinturbulentthroughaclosedchannel
321.Velocitydistributionfor99Viscousstresses粘性應(yīng)力Viscousstress+TurbulentstressTurbulentstressorReynoldstress湍流應(yīng)力or雷諾應(yīng)力viscoussublayer:bufferlayer:turbulentcore:33ViscousstressesViscousstr100viscoussublayer:bufferlayer:turbulentcore:Velocitygradientlargemiddlesmall34viscoussublayer:Velocitygr10135102Itiscustomarytoexpressthevelocitydistributioninturbulentflowintermsofdimensionlessparameters
(5.31)Frictionvelocity摩擦速度,m/sFrictiondistance,摩擦距離,m.36Itiscustomarytoexpresst103(5.32)velocityquotient,dimensionless無量綱速度(5.33)dimensionlessdistance,無量綱距離
y=distancefromwalloftube(5.34)37(5.32)velocityquotient,dim1042.Universalvelocitydistributionequations通用速度分布方程382.Universalvelocitydistri105viscoussublayer
(5.35)(5.36)fortheviscoussublayer:39viscoussublayer(5.35)(5.36106bufferlayer
:anempiricalequation(5.37)forthebufferzone:40bufferlayer:anempirical107turbulentcore:(5.38)fortheturbulentcore:41turbulentcore:(5.38)fort108421093.Limitationsofuniversalvelocitydistributionlaws
433.Limitationsofuniversal1104.Flowquantitiesforturbulentflowinsmoothroundpipes444.Flowquantitiesforturbu111Averagevelocity
(5.46)(5.47)45Averagevelocity(5.46)(5.47112TheReynoldsnumber-frictionfactorlawforsmoothtubes
vonKarmanequation
(5.50)46TheReynoldsnumber-friction113Thekineticenergyandmomentumcorrectionfactors
(5.51)(5.52)47Thekineticenergyandmomen114ForaReynoldsnumberof104,thefrictionfactorforasmoothtubeis0.0079,αis1.084,andβis1.031.
Forexample:ForRe=106thevaluesaref=0.0029,α=1.032,andβ=1.011.
Forturbulentflowtheerrorisusuallyverysmallifαandβareassumedtobeunity48ForaReynoldsnumberof1041155.RelationsbetweenmaximumvelocityandaveragevelocityExperimentallymeasuredvaluesofasafunctionoftheReynoldsnumberareshowninFig.5.8,495.Relationsbe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 休閑時間利用研究-深度研究
- 2025年廣州華夏職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 衛(wèi)星通信地球站安全防護(hù)技術(shù)-深度研究
- 2025年山西經(jīng)貿(mào)職業(yè)學(xué)院高職單招高職單招英語2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年安徽醫(yī)學(xué)高等??茖W(xué)校高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年安徽交通職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025至2030年中國木櫥柜數(shù)據(jù)監(jiān)測研究報告
- 二零二五年度物流園區(qū)租賃與物流服務(wù)承包協(xié)議4篇
- 2025年中國襪子市場調(diào)查研究報告
- 2025年度高端人才勞務(wù)派遣合作協(xié)議范本4篇
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計與授權(quán)使用3篇
- 心肺復(fù)蘇課件2024
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊》專題培訓(xùn)
- 湖南財政經(jīng)濟(jì)學(xué)院專升本管理學(xué)真題
- 全國身份證前六位、區(qū)號、郵編-編碼大全
- 2024-2025學(xué)年福建省廈門市第一中學(xué)高一(上)適應(yīng)性訓(xùn)練物理試卷(10月)(含答案)
- 《零售學(xué)第二版教學(xué)》課件
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年四年級下學(xué)期期末數(shù)學(xué)試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計價定額(2014)電子表格版
- MOOC 數(shù)字電路與系統(tǒng)-大連理工大學(xué) 中國大學(xué)慕課答案
評論
0/150
提交評論