版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.如下圖是一個正方體的平面展開圖,在這個正方體中①②與成角③與為異面直線④以上四個命題中,正確的序號是A.①②③ B.②④C.③④ D.②③④2.已知函數(shù)的圖象關于直線對稱,且,則的最小值為()A. B.C. D.3.將函數(shù)的圖象上各點的橫坐標伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心()A. B.C. D.4.函數(shù)其中(,)的圖象如圖所示,為了得到圖象,則只需將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度5.設是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則6.已知,則的大小關系為A. B.C. D.7.某國近日開展了大規(guī)模COVID-19核酸檢測,并將數(shù)據(jù)整理如圖所示,其中集合S表示()A.無癥狀感染者 B.發(fā)病者C.未感染者 D.輕癥感染者8.已知函數(shù),,則()A.的最大值為 B.在區(qū)間上只有個零點C.的最小正周期為 D.為圖象的一條對稱軸9.已知,,若對任意,或,則的取值范圍是A. B.C. D.10.已知集合,,則()A. B.C. D.11.納皮爾是蘇格蘭數(shù)學家,其主要成果有球面三角中納皮爾比擬式、納皮爾圓部法則(1614)和納皮爾算籌(1617),而最大貢獻是對數(shù)的發(fā)明,著有《奇妙的對數(shù)定律說明書》,并且發(fā)明了對數(shù)尺,可以利用對數(shù)尺查詢出任意一對數(shù)值.現(xiàn)將物體放在空氣中冷卻,如果物體原來的溫度是(℃),空氣的溫度是(℃),經過t分鐘后物體的溫度T(℃)可由公式得出,如溫度為90℃的物體,放在空氣中冷卻2.5236分鐘后,物體的溫度是50℃,若根據(jù)對數(shù)尺可以查詢出,則空氣溫度是()A.5℃ B.10℃C.15℃ D.20℃12.已知冪函數(shù)在上是增函數(shù),則n的值為()A. B.1C. D.1和二、填空題(本大題共4小題,共20分)13.函數(shù)的定義域為_______________14.命題“”的否定是__________15.,若,則________.16.=_______________.三、解答題(本大題共6小題,共70分)17.定義在R上的函數(shù)對任意的都有,且,當時.(1)求的值,并證明是R上的增函數(shù);(2)設,(i)判斷的單調性(不需要證明)(ii)解關于x的不等式.18.已知函數(shù)(1)求函數(shù)的對稱軸和單調減區(qū)間;(2)當時,函數(shù)的最大值與最小值的和為2,求a19.某汽車配件廠擬引進智能機器人來代替人工進行某個操作,以提高運作效率和降低人工成本,已知購買x臺機器人的總成本為(萬元)(1)若使每臺機器人的平均成本最低,問應買多少臺?(2)現(xiàn)按(1)中求得的數(shù)量購買機器人,需要安排m人協(xié)助機器人,經實驗知,每臺機器人的日平均工作量(單位:次),已知傳統(tǒng)人工每人每日的平均工作量為400次,問引進機器人后,日平均工作量達最大值時,用人數(shù)量比引進機器人前工作量達此最大值時的用人數(shù)量減少百分之幾?20.在中,頂點,,BC邊所在直線方程為.(1)求過點A且平行于BC的直線方程;(2)求線段AB的垂直平分線方程.21.已知平面直角坐標系內兩點A(4,0),B(0,3).(1)求直線AB方程;(2)若直線l平行于直線AB,且到直線AB的距離為2,求直線l的方程.22.在中,角所對的邊分別為,滿足.(1)求角的大小;(2)若,且,求的面積
參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:由正方體的幾何特征可得:①不平行,不正確;
②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;④易證,故,正確;故選D2、D【解析】由輔助角公式可得,由函數(shù)關于直線對稱,可得,可?。畯亩傻?,由此結合,可得一個最大值一個最小值,從而可得結果.【詳解】,,函數(shù)關于直線對稱,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故選D【點睛】本題主要考查輔助角公式的應用、三角函數(shù)的最值、三角函數(shù)的對稱性,轉化與劃歸思想的應用,屬于難題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標.3、A【解析】先根據(jù)三角函數(shù)圖象變換規(guī)律寫出所得函數(shù)的解析式,再求出其對稱中心,確定選項【詳解】解:函數(shù)的圖象上各點的橫坐標伸長到原來的3倍得到圖象的解析式為再向右平移個單位得到圖象的解析式為令,得,所以函數(shù)的對稱中心為觀察選項只有A符合故選A【點睛】本題考查了三角函數(shù)圖象變換規(guī)律,三角函數(shù)圖象、性質.是三角函數(shù)中的重點知識,在試題中出現(xiàn)的頻率相當高4、D【解析】根據(jù)圖像計算周期和最值得到,,再代入點計算得到,根據(jù)平移法則得到答案.【詳解】根據(jù)圖象:,,故,,故,,即,,,當時,滿足條件,則,故只需將的圖象向左平移個單位即可.故選:D.5、A【解析】本道題目分別結合平面與平面平行判定與性質,平面與平面平行垂直判定與性質,即可得出答案.【詳解】A選項,結合一條直線與一平面垂直,則過該直線的平面垂直于這個平面,故正確;B選項,平面垂直,則位于兩平面的直線不一定垂直,故B錯誤;C選項,可能平行于與相交線,故錯誤;D選項,m與n可能異面,故錯誤【點睛】本道題目考查了平面與平面平行判定與性質,平面與平面平行垂直判定與性質,發(fā)揮空間想象能力,找出選項的漏洞,即可.6、D【解析】,且,,,故選D.7、A【解析】由即可判斷S的含義.【詳解】解:由圖可知,集合S是集合A與集合B的交集,所以集合S表示:感染未發(fā)病者,即無癥狀感染者,故選:A.8、D【解析】首先利用二倍角公式及輔助角公式將函數(shù)化簡,再結合正弦函數(shù)的性質計算可得;【詳解】解:函數(shù),可得的最大值為2,最小正周期為,故A、C錯誤;由可得,即,可知在區(qū)間上的零點為,故B錯誤;由,可知為圖象的一條對稱軸,故D正確故選:D9、C【解析】先判斷函數(shù)g(x)的取值范圍,然后根據(jù)或成立求得m的取值范圍.【詳解】∵g(x)=﹣2,當x<時,恒成立,當x≥時,g(x)≥0,又∵?x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立,即m(x﹣2m)(x+m+3)<0在x≥時恒成立,則二次函數(shù)y=m(x﹣2m)(x+m+3)圖象開口只能向下,且與x軸交點都在(,0)的左側,∴,即,解得<m<0,∴實數(shù)m的取值范圍是:(,0)故選C【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質,根據(jù)條件確定f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立是解決本題的關鍵,綜合性較強,難度較大10、B【解析】解對數(shù)不等式求得集合,由此判斷出正確選項.【詳解】,所以,所以沒有包含關系,所以ACD選項錯誤,B選項正確.故選:B11、B【解析】依題意可得,即,即可得到方程,解得即可;【詳解】:依題意,即,又,所以,即,解得;故選:B12、C【解析】利用冪函數(shù)的定義與單調性即可得解.【詳解】因為函數(shù)是冪函數(shù),所以解得:或當時,在上是增函數(shù),符合題意.當時,在上是減函數(shù),不符合題意.故選:C【點睛】易錯點睛:本題主要考查了冪函數(shù)的定義及性質,利用冪函數(shù)的定義知其系數(shù)為1,解方程即可,一定要驗證是否符合在上是增函數(shù)的條件,考查了學生的運算求解的能力,屬于基礎題.二、填空題(本大題共4小題,共20分)13、【解析】由題可知,解不等式即可得出原函數(shù)的定義域.【詳解】對于函數(shù),有,即,解得,因此,函數(shù)的定義域為.故答案為:.14、【解析】特稱命題的否定.【詳解】命題“”的否定是【點睛】本題考查特稱命題的否定,屬于基礎題;對于含有量詞的命題的否定要注意兩點:一是要改換量詞,即把全稱(特稱)量詞改為特稱(全稱)量詞,二是注意要把命題進行否定.15、【解析】分和兩種情況解方程,由此可得出的值.【詳解】當時,由,解得;當時,由,解得(舍去).綜上所述,.故答案為:.16、【解析】解:三、解答題(本大題共6小題,共70分)17、(1),證明見解析(2)(i)在上是單減單減函數(shù)(ii)【解析】(1)令可得,再可得答案,設,則,所以可證明單調性;(2)(i)根據(jù)復合函數(shù)的單調性法則可得答案;(ii)由題意可得,,結合函數(shù)的單調性可得的解為,則原不等式等價于,從而可得答案.【小問1詳解】在中,令可得,則令可得,可得任取且,則,所以則即,所以是R上的增函數(shù)【小問2詳解】(i)由在上是單減單減函數(shù),又單調遞增由復合函數(shù)的單調性規(guī)律可得在上是單減單減函數(shù).(ii)由,所以的解為從而不等式的解為,即即,整理可得即,解得或,所以或所以原不等式的解集為18、(1)對稱軸為,單調減區(qū)間(2)【解析】(1)先利用三角恒等變換化簡解析式,再由正弦函數(shù)的性質求解即可;(2)由正弦函數(shù)的性質得出函數(shù)的最大值與最小值,進而得出.【小問1詳解】由可得,函數(shù)的對稱軸為由可得,即單調減區(qū)間為【小問2詳解】19、(1)8臺(2)【解析】(1)根據(jù)題意將問題轉化為對的求解,利用基本不等式即可;(2)先求出一臺機器人的最大日工作量,根據(jù)最大工作量再求出所需要的人數(shù),通過比較即可求解.【小問1詳解】由題意當且僅當,即時,等號成立,所以應購買8臺,可使每臺機器人的平均成本最低【小問2詳解】由,可得當時,,所以時,每臺機器人的日平均工作量最大時,安排的人工數(shù)最小為20人,而此時人工操作需要的人工數(shù)為,所以可減少20、(1)(2)【解析】(1)利用點斜式求得過點A且平行于BC的直線方程.(2)根據(jù)中點坐標、線段AB的垂直平分線的斜率求得正確答案.【小問1詳解】直線的斜率為,所以過點A且平行于BC的直線方程為.【小問2詳解】線段的中點為,直線的斜率為,所以線段AB的垂直平分線的斜率為,所以線段AB的垂直平分線為.21、(1)(2)或【解析】(1)由直線方程的兩點式可求解;(2)根據(jù)直線的平行關系及平行直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全面施工合同模板集
- 房屋貸款保險合同參考
- 合作設立公司合作協(xié)議2024年
- 建筑工程價格調整合同條款12024年
- 2024年簡易工程委托協(xié)議范本
- 共同生活期間財產分配協(xié)議
- 2024年工廠土地轉讓合同書格式
- 環(huán)保搬遷補償安置資金監(jiān)管合同
- 養(yǎng)殖場經營合同
- 股權投資合作協(xié)議編寫
- 企業(yè)內訓師培訓師理論知識考試題庫500題(含各題型)
- 兒科小兒肱骨髁上骨折診療規(guī)范
- 介紹班級優(yōu)化大師
- (完整)雙溪課程評量表
- 煤氣柜設計安全要求
- 廣東省衛(wèi)生正高評審答辯
- 公共關系學課件
- 2022車企私域運營白皮書
- 知識產權法電子文檔
- 論文 小學英語學科育人教育的實踐探索
- 醫(yī)療器械臨床試驗質量管理規(guī)范考核試題及答案
評論
0/150
提交評論