版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)(其中mR)的圖像不可能是()A. B.C. D.2.下列函數(shù)中,在區(qū)間上為增函數(shù)的是()A. B.C. D.3.設全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,64.已知冪函數(shù)的圖像過點,則下列關于說法正確的是()A.奇函數(shù) B.偶函數(shù)C.定義域為 D.在單調遞減5.已知正方體外接球的表面積為,正方體外接球的表面積為,若這兩個正方體的所有棱長之和為,則的最小值為()A. B.C. D.6.已知函數(shù),若關于x的方程恰有兩個不同的實數(shù)解,則實數(shù)m的取值范圍是()A. B.C. D.7.已知三棱錐的三條棱,,長分別是3、4、5,三條棱,,兩兩垂直,且該棱錐4個頂點都在同一球面上,則這個球的表面積是A B.C. D.都不對8.已知函數(shù)為偶函數(shù),則A.2 B.C. D.9.下列函數(shù)中,既是奇函數(shù)又在定義域上是增函數(shù)的為A. B.C. D.10.函數(shù)y=的定義域是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域是___________.12.某學校在校學生有2000人,為了增強學生的體質,學校舉行了跑步和登山比賽,每人都參加且只參加其中一項比賽,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,全校參加登山的人數(shù)占總人數(shù)的.為了了解學生對本次比賽的滿意程度,按分層抽樣的方法從中抽取一個容量為200的樣本進行調查,則應從高三年級參加跑步的學生中抽取人數(shù)為______.13.某圓錐體的側面展開圖是半圓,當側面積是時,則該圓錐體的體積是_______14.已知,,與的夾角為60°,則________.15.設,向量,,若,則_______16.,的定義域為____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數(shù)的最小值為.(1)求;(2)若,求a及此時的最大值.18.設直線l的方程為.(1)若l在兩坐標軸上的截距相等,求直線l的方程(2)若l在兩坐標軸上的截距互為相反數(shù),求a.19.某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查與預測,A產(chǎn)品的利潤與投資成正比,其關系如圖①;B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖②.(注:利潤和投資單位:萬元)(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關系式;(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?20.已知函數(shù)(1)求函數(shù)的零點;(2)若實數(shù)滿足,求的取值范圍.21.已知函數(shù),其中(1)當時,求不等式的解集;(2)若關于x的方程的解集中恰好有一個元素,求m的取值范圍;(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求m的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】對m分類討論,利用對勾函數(shù)的單調性,逐一進行判斷圖像即可.【詳解】易見,①當時,圖像如A選項;②當時,時,易見在遞增,得在遞增;時,令,得為對勾函數(shù),所以在遞增,遞減,所以根據(jù)復合函數(shù)單調性得在遞減,遞增,圖像為D;③當時,時,易見在遞減,故在遞減;時為對勾函數(shù),所以在遞減,遞增,圖像為B.因此,圖像不可能是C.故選:C.【點睛】本題考查了利用對勾函數(shù)單調性來判斷函數(shù)的圖像,屬于中檔題.2、B【解析】利用基本初等函數(shù)的單調性可得出合適的選項.【詳解】函數(shù)、在區(qū)間上為減函數(shù),函數(shù)在區(qū)間上為增函數(shù),函數(shù)在區(qū)間上不單調.故選:B.3、B【解析】由補集的定義分析可得?U【詳解】根據(jù)題意,全集U=1,2,3,4,5,6,7,8,9,而A=則?U故選:B4、D【解析】設出冪函數(shù)的解析式,將所過點坐標代入,即可求出該函數(shù).再根據(jù)冪函數(shù)的性質的結論,選出正確選項.【詳解】設冪函數(shù)為,因為函數(shù)過點,所以,則,所以,該函數(shù)定義域為,則其既不是奇函數(shù)也不是偶函數(shù),且由可知,該冪函數(shù)在單調遞減.故選:D.5、B【解析】設正方體的棱長為,正方體的棱長為,然后表示出兩個正方體外接球的表面積,求出化簡變形可得答案【詳解】解:設正方體的棱長為,正方體的棱長為因為,所以,則因為,所以,因為,所以,故當時,取得最小值,且最小值為故選:B6、D【解析】根據(jù)題意,函數(shù)與圖像有兩個交點,進而作出函數(shù)圖像,數(shù)形結合求解即可.【詳解】解:因為關于x的方程恰有兩個不同的實數(shù)解,所以函數(shù)與圖像有兩個交點,作出函數(shù)圖像,如圖,所以時,函數(shù)與圖像有兩個交點,所以實數(shù)m的取值范圍是故選:D7、B【解析】長方體的一個頂點上的三條棱分別為,且它的八個頂點都在同一個球面上,則長方體的對角線就是球的直徑,長方體的對角線為球的半徑為則這個球的表面積為故選點睛:本題考查的是球的體積和表面積以及球內(nèi)接多面體的知識點.由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積即可8、A【解析】由偶函數(shù)的定義,求得的解析式,再由對數(shù)的恒等式,可得所求,得到答案【詳解】由題意,函數(shù)為偶函數(shù),可得時,,,則,,可得,故選A【點睛】本題主要考查了分段函數(shù)的運用,函數(shù)的奇偶性的運用,其中解答中熟練應用對數(shù)的運算性質,正確求解集合A,再根據(jù)集合的運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、D【解析】選項,在定義域上是增函數(shù),但是是非奇非偶函數(shù),故錯;選項,是偶函數(shù),且在上是增函數(shù),在上是減函數(shù),故錯;選項,是奇函數(shù)且在和上單調遞減,故錯;選項,是奇函數(shù),且在上是增函數(shù),故正確綜上所述,故選10、A【解析】根據(jù)偶次方根的被開方數(shù)為非負數(shù),對數(shù)的真數(shù)大于零列不等式,由此求得函數(shù)的定義域.【詳解】依題意,所以的定義域為.故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用根式、分式的性質求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.12、【解析】由題意求得樣本中抽取的高三的人數(shù)為人進而求得樣本中高三年級參加登山的人,即可求解.【詳解】由題意,高一、高二、高三年級參加跑步的人數(shù)分別為a,b,c,且,所以樣本中抽取的高三的人數(shù)為人,又因為全校參加登山的人數(shù)占總人數(shù)的,所以樣本中高三年級參加登山的人數(shù)為,所以樣本中高三年級參加跑步的人數(shù)為人.故答案為:.13、【解析】設圓錐的母線長為,底面半徑為,則,,,,所以圓錐的高為,體積為.考點:圓錐的側面展開圖與體積.14、10【解析】由數(shù)量積的定義直接計算.【詳解】.故答案為:10.15、【解析】根據(jù)向量共線的坐標表示,得到,再由二倍角的正弦公式化簡整理,即可得出結果.【詳解】∵,向量,,∴,∴,∵,∴故答案為:.【點睛】本題主要考查由向量共線求參數(shù),涉及二倍角的正弦公式,熟記向量共線的坐標表示即可,屬于??碱}型.16、【解析】由,根據(jù)余弦函數(shù)在的圖象可求得結果.【詳解】由得:,又,,即的定義域為.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最大值5【解析】(1)通過配方得,再通過對范圍的討論,利用二次函數(shù)的單調性即可求得;(2)由于,對分與進行討論,即可求得的值及的最大值【小問1詳解】∵,∴,且,∴若,即,當時,;若,即,當時,;若,即,當時,.綜上所述,.【小問2詳解】∵,∴若,則有,得,與矛盾;若,則有,即,解得或(舍),∴時,,即,∵,∴當時,取得最大值5.18、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直線在兩坐標軸上的截距相等,有兩種情況:截距為0和截距不為0,分別求出兩種情況下的a的值,即得直線l的方程;(2)直線在兩坐標軸上的截距互為相反數(shù),由(1)可知有,解方程可得a?!驹斀狻浚?)當直線過原點時,該直線在x軸和y軸上截距為零,∴a=2,方程即為,當直線不經(jīng)過原點時,截距存在且均不為0.∴,即a+1=1.∴a=0,方程即為x+y+2=0.綜上,直線l的方程為3x+y=0或x+y+2=0.(2)由,得a-2=0或a+1=-1,∴a=2或a=-2.【點睛】第一個問中,直線在兩坐標軸上的截距相等,注意不要忽略截距為0的情況。19、(1);(2)當A,B兩種產(chǎn)品分別投入2萬元、16萬元時,可使該企業(yè)獲得最大利潤,約為8.5萬元.【解析】⑴設出函數(shù)解析式,根據(jù)圖象,即可求得答案;⑵確定總利潤函數(shù),換元,利用配方法可求最值;解析:(1)根據(jù)題意可設,則f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)設B產(chǎn)品投入x萬元,A產(chǎn)品投入(18-x)萬元,該企業(yè)可獲總利潤為y萬元則y=(18-x)+2,0≤x≤18令=t,t∈[0,3],則y=(-t2+8t+18)=-(t-4)2+.所以當t=4時,ymax==8.5,此時x=16,18-x=2.所以當A,B兩種產(chǎn)品分別投入2萬元、16萬元時,可使該企業(yè)獲得最大利潤,約8.5萬元.20、(1)零點為;(2).【解析】(1)分類討論,函數(shù)對應方程根的個數(shù),綜合討論結果,可得答案;(2)分析函數(shù)的奇偶性和單調性,進而可將不等式化為,解得的取值范圍【詳解】(1),或,函數(shù)的零點為;(2)當時,,此時,當時,,同理,,故函數(shù)為偶函數(shù),又時,為增函數(shù),(2)時,(2),即,,,綜上所述,的取值范圍是.【點睛】關鍵點點睛:(1)函數(shù)的零點即相應方程的根;(2)處理抽象不等式要充分利用函數(shù)的單調性與奇偶性去掉絕對值,轉化為具體的不等式.21、(1);(2);(3).【解析】(1)當時,解對數(shù)不等式即可(2)根據(jù)對數(shù)的運算法則進行化簡,轉化為一元二次方程,討論的取值范圍進行求解即可(3)根據(jù)條件得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古烏海市(2024年-2025年小學五年級語文)人教版期中考試(上學期)試卷及答案
- 食品進口企業(yè)合規(guī)管理制度
- 房地產(chǎn)開發(fā)安全信息監(jiān)管制度
- 環(huán)境保護領域培訓與考核制度
- 幼兒園營養(yǎng)與鍛煉結合制度
- 歷史-2025屆山東省煙臺市高三11月期中學診斷檢測試卷和答案
- 鄉(xiāng)村學校合并優(yōu)化實施方案
- 軌道交通建設勞務施工方案
- 建筑工地疫情防控應急響應方案
- 防水安全:防止水災和水污染
- 四川省眉山市2023-2024學年八年級上學期語文期中試卷(含答案)
- 期中 (試題) -2024-2025學年譯林版(三起)英語三年級上冊
- 10以內(nèi)加減法(直接打印,20篇)
- 《田螺姑娘》兒童故事ppt課件(圖文演講)
- 【樓屋面裂縫原因及防治措施研究(論文)】
- GB/T 4337-2015金屬材料疲勞試驗旋轉彎曲方法
- 五年級上冊英語課件-Unit5 What do they do?(第一課時) |譯林版(三起) (共17張PPT)
- 《觀察課—桔子》(課堂PPT)
- 各類梁的彎矩剪力計算匯總表
- (完整版)降低房租申請書
- 師徒結對活動記錄表-師傅
評論
0/150
提交評論