![河南省平頂山市魯山一中2022年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/7d2832f3234bd71f1d8ca988bf82ef05/7d2832f3234bd71f1d8ca988bf82ef051.gif)
![河南省平頂山市魯山一中2022年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/7d2832f3234bd71f1d8ca988bf82ef05/7d2832f3234bd71f1d8ca988bf82ef052.gif)
![河南省平頂山市魯山一中2022年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/7d2832f3234bd71f1d8ca988bf82ef05/7d2832f3234bd71f1d8ca988bf82ef053.gif)
![河南省平頂山市魯山一中2022年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/7d2832f3234bd71f1d8ca988bf82ef05/7d2832f3234bd71f1d8ca988bf82ef054.gif)
![河南省平頂山市魯山一中2022年數(shù)學(xué)高一上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/7d2832f3234bd71f1d8ca988bf82ef05/7d2832f3234bd71f1d8ca988bf82ef055.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,共60分)1.以下命題(其中,表示直線,表示平面):①若,,則;②若,,則;③若,,則;④若,,則其中正確命題的個數(shù)是A.0個 B.1個C.2個 D.3個2.已知,且,對任意的實數(shù),函數(shù)不可能A.是奇函數(shù) B.是偶函數(shù)C.既是奇函數(shù)又是偶函數(shù) D.既不是奇函數(shù)又不是偶函數(shù)3.已知是上的奇函數(shù),且當(dāng)時,,則當(dāng)時,()A. B.C. D.4.由直線上的點向圓引切線,則切線長的最小值為()A. B.C. D.5.函數(shù)中,自變量x的取值范圍是()A. B.C.且 D.6.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.7.函數(shù)f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)8.若,,則的值為A. B.C. D.9.函數(shù)的部分圖象如圖所示,將函數(shù)的圖象向左平移個單位長度后得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的最小正周期為C.函數(shù)的圖象的對稱軸為直線D.函數(shù)的單調(diào)遞增區(qū)間為10.函數(shù)的值域為()A. B.C. D.11.已知函數(shù),若,,,則實數(shù)、、的大小關(guān)系為()A. B.C. D.12.已知函數(shù),.若在區(qū)間內(nèi)沒有零點,則的取值范圍是A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知直線與兩坐標軸所圍成的三角形的面積為1,則實數(shù)值是____________14.已知冪函數(shù)過定點,且滿足,則的范圍為________15.集合,則____________16.若“”是真命題,則實數(shù)的最小值為_____________.三、解答題(本大題共6小題,共70分)17.已知是定義在上的奇函數(shù),,當(dāng)時的解析式為.(1)寫出在上的解析式;(2)求在上的最值.18.已知函數(shù),()(1)當(dāng)時,求不等式的解集;(2)若對任意,不等式恒成立,求的取值范圍;(3)若對任意,存在,使得,求的取值范圍19.已知函數(shù)在閉區(qū)間()上的最小值為(1)求的函數(shù)表達式;(2)畫出的簡圖,并寫出的最小值20.指數(shù)函數(shù)(且)和對數(shù)函數(shù)(且)互為反函數(shù),已知函數(shù),其反函數(shù)為(1)若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍;(2)是否存在實數(shù)使得對任意,關(guān)于的方程在區(qū)間上總有三個不等根,,?若存在,求出實數(shù)及的取值范圍;若不存在,請說明理由21.已知函數(shù),其中.(1)若是周期為的偶函數(shù),求及的值.(2)若在上是增函數(shù),求的最大值.(3)當(dāng)時,將函數(shù)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若在上至少含有10個零點,求b的最小值.22.已知不等式的解集為(1)求a的值;(2)若不等式的解集為R,求實數(shù)m的取值范圍.
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】利用線面平行和線線平行的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】①若a∥b,b?α,則a∥α或a?α,故錯;②若a∥α,b∥α,則a,b平行、相交或異面,故②錯;③若a∥b,b∥α,則a∥α或a?α,故③錯;④若a∥α,b?α,則a、b平行或異面,故④錯正確命題個數(shù)為0個,故選A.【點睛】本題考查空間兩直線的位置關(guān)系,直線與平面的位置關(guān)系,主要考查線面平行的判定和性質(zhì).2、C【解析】,當(dāng)時,,為偶函數(shù)當(dāng)時,,為奇函數(shù)當(dāng)且時,既不奇函數(shù)又不是偶函數(shù)故選3、B【解析】設(shè),則,求出的解析式,根據(jù)函數(shù)為上的奇函數(shù),即可求得時,函數(shù)的解析式,得到答案.【詳解】由題意,設(shè),則,則,因為函數(shù)為上的奇函數(shù),則,得,即當(dāng)時,.故選:B.【點睛】本題主要考查了利用函數(shù)的奇偶性求解函數(shù)的解析式,其中解答中熟記函數(shù)的奇偶性,合理計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4、B【解析】要使切線長最小,必須直線y=x+2上的點到圓心的距離最小,此最小值即為圓心(4,﹣2)到直線的距離m,求出m,由勾股定理可求切線長的最小值【詳解】要使切線長最小,必須直線y=x+2上的點到圓心的距離最小,此最小值即為圓心(4,﹣2)到直線的距離m,由點到直線的距離公式得m==4,由勾股定理求得切線長的最小值為=故選B【點睛】本題考查直線和圓的位置關(guān)系,點到直線的距離公式、勾股定理的應(yīng)用.解題的關(guān)鍵是理解要使切線長最小,必須直線y=x+2上的點到圓心的距離最小5、B【解析】根據(jù)二次根式的意義和分式的意義可得,解之即可.【詳解】由題意知,,解得,即函數(shù)的定義域為.故選:B6、A【解析】先求得函數(shù)的定義域,利用二次函數(shù)的性質(zhì)求得函數(shù)的單調(diào)區(qū)間,結(jié)合復(fù)合函數(shù)單調(diào)性的判定方法,即可求解.【詳解】由不等式,即,解得,即函數(shù)的定義域為,令,可得其圖象開口向下,對稱軸的方程為,當(dāng)時,函數(shù)單調(diào)遞增,又由函數(shù)在定義域上為單調(diào)遞減函數(shù),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)的單調(diào)減區(qū)間為.故選:A.7、C【解析】,所以零點在區(qū)間(0,1)上考點:零點存在性定理8、A【解析】由兩角差的正切公式展開計算可得【詳解】解:,,則,故選A【點睛】本題考查兩角差的正切公式:,對應(yīng)還應(yīng)該掌握兩角和的正切公式,及正弦余弦公式.本題是基礎(chǔ)9、D【解析】根據(jù)圖象得到函數(shù)解析式,將函數(shù)的圖象向左平移個單位長度后得到的圖象,可得解析式,分別根據(jù)正弦函數(shù)的奇偶性、單調(diào)性、周期性與對稱性,對選項中的結(jié)論判斷,從而可得結(jié)論.【詳解】由圖象可知,,∴,則.將點的坐標代入中,整理得,∴,即;,∴,∴.∵將函數(shù)的圖象向左平移個單位長度后得到的圖象,∴.,∴既不是奇函數(shù)也不是偶函數(shù),故A錯誤;∴的最小正周期,故B不正確.令,解得,則函數(shù)圖像的對稱軸為直線.故C錯誤;由,可得,∴函數(shù)的單調(diào)遞增區(qū)間為.故D正確;故選:D.【點睛】關(guān)鍵點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),熟記正弦函數(shù)的奇偶性、單調(diào)區(qū)間、最小正周期與對稱軸是解決本題的關(guān)鍵.10、C【解析】由二倍角公式化簡,設(shè),利用復(fù)合函數(shù)求值域.【詳解】函數(shù),設(shè),,則,由二次函數(shù)的圖像及性質(zhì)可知,所以的值域為,故選:C.11、D【解析】根據(jù)條件判斷函數(shù)是偶函數(shù),且當(dāng)時是增函數(shù),結(jié)合函數(shù)單調(diào)性進行比較即可【詳解】函數(shù)為偶函數(shù),當(dāng)時,為增函數(shù),,,,則(1),即,則,故選:12、D【解析】先把化成,求出的零點的一般形式為,根據(jù)在區(qū)間內(nèi)沒有零點可得關(guān)于的不等式組,結(jié)合為整數(shù)可得其相應(yīng)的取值,從而得到所求的取值范圍.【詳解】由題設(shè)有,令,則有即因為在區(qū)間內(nèi)沒有零點,故存在整數(shù),使得,即,因為,所以且,故或,所以或,故選:D.【點睛】本題考查三角函數(shù)在給定范圍上的零點的存在性問題,此類問題可轉(zhuǎn)化為不等式組的整數(shù)解問題,本題屬于難題.二、填空題(本大題共4小題,共20分)13、1或-1【解析】令x=0,得y=k;令y=0,得x=?2k.∴三角形面積S=|xy|=k2.又S=1,即k2=1,值是1或-1.14、【解析】根據(jù)冪函數(shù)所過的點求出解析式,利用奇偶性和單調(diào)性去掉轉(zhuǎn)化為關(guān)于的不等式即可求解.【詳解】設(shè)冪函數(shù),其圖象過點,所以,即,解得:,所以,因為,所以為奇函數(shù),且在和上單調(diào)遞減,所以可化為,可得,解得:,所以的范圍為,故答案為:.15、【解析】分別解出集合,,再根據(jù)并集的定義計算可得.【詳解】∵∴,∵,∴,則,故答案為:【點睛】本題考查指數(shù)不等式、對數(shù)不等式的解法,并集的運算,屬于基礎(chǔ)題.16、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應(yīng)填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).三、解答題(本大題共6小題,共70分)17、(1)(2)最大值為0,最小值為【解析】(1)先求得參數(shù),再依據(jù)奇函數(shù)性質(zhì)即可求得在上的解析式;(2)轉(zhuǎn)化為二次函數(shù)在給定區(qū)間求值域即可解決.【小問1詳解】因為是定義在上的奇函數(shù),所以,即,由,得,由,解得,則當(dāng)時,函數(shù)解析式為設(shè),則,,即當(dāng)時,【小問2詳解】當(dāng)時,,所以當(dāng),即時,的最大值為0,當(dāng),即時,的最小值為.18、(1)或(2)(3)【解析】(1)將代入不等式,解該一元二次不等式即可;(2)轉(zhuǎn)化為一元二次不等式恒成立問題,利用即可解得參數(shù)的范圍;(3)對任意,存在,使得,轉(zhuǎn)化為的值域包含于的值域.同時對值域的求解,需要根據(jù)二次函數(shù)對稱軸與閉區(qū)間的相對位置進行討論,最終解不等式組求解.【小問1詳解】當(dāng)時,由得,即,解得或所以不等式的解集為或小問2詳解】由得,即不等式的解集是所以,解得所以的取值范圍是小問3詳解】當(dāng)時,又①當(dāng),即時,對任意,所以,此時不等式組無解,②當(dāng),即時,對任意,所以2<m≤3,4-m2③當(dāng),即時,對任意,所以此時不等式組無解,④當(dāng),即時,對任意,所以此時不等式組無解綜上,實數(shù)的取值范圍是【點睛】關(guān)鍵點點睛,本題中“對任意,存在,使得”這一條件轉(zhuǎn)化為函數(shù)值域的包含關(guān)系是解決問題的關(guān)鍵,而其中二次函數(shù)在閉區(qū)間上的值域問題,又需要針對對稱軸與區(qū)間的相對位置進行討論.19、(1)(2)見解析【解析】【試題分析】(1)由于函數(shù)的對稱軸為且開口向上,所以按三類,討論函數(shù)的最小值.(2)由(1)將分段函數(shù)的圖象畫出,由圖象可判斷出函數(shù)的最小值.【試題解析】(1)依題意知,函數(shù)是開口向上的拋物線,∴函數(shù)有最小值,且當(dāng)時,下面分情況討論函數(shù)在閉區(qū)間()上的取值情況:①當(dāng)閉區(qū)間,即時,在處取到最小值,此時;②當(dāng),即時,在處取到最小值,此時;③當(dāng)閉區(qū)間,即時,在處取到最小值,此時綜上,的函數(shù)表達式為(2)由(1)可知,為分段函數(shù),作出其圖象如圖:由圖像可知【點睛】本題主要考查二次函數(shù)在動區(qū)間上的最值問題,考查分類討論的數(shù)學(xué)思想,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法.由于二次函數(shù)的解析式是知道的,即開口方向和對稱軸都知道,而題目給定定義域是含有參數(shù)的動區(qū)間,故需要對區(qū)間和對稱軸對比進行分類討論函數(shù)的最值.20、(1);(2)存在,,.【解析】(1)利用復(fù)合函數(shù)的單調(diào)性及函數(shù)的定義域可得,即得;(2)由題可得,令,則可得時,方程有兩個不等的實數(shù)根,當(dāng)時方程有且僅有一個根在區(qū)間內(nèi)或1,進而可得對于任意的關(guān)于t的方程,在區(qū)間上總有兩個不等根,且有兩個不等根,只有一個根,再利用二次函數(shù)的性質(zhì)可得,即得.【小問1詳解】∵函數(shù),其反函數(shù)為,∴,∴,又函數(shù)在區(qū)間上單調(diào)遞減,又∵在定義域上單調(diào)遞增,∴函數(shù)在區(qū)間上單調(diào)遞減,∴,解得;【小問2詳解】∵,∴,∵,,令,則時,方程有兩個不等的實數(shù)根,不妨設(shè)為,則,即,∴,即方程有兩個不等的實數(shù)根,且兩根積為1,當(dāng)時方程有且僅有一個根在區(qū)間內(nèi)或1,由,可得,令,則原題目等價于對于任意的關(guān)于t的方程,在區(qū)間上總有兩個不等根,且有兩個不等根,只有一個根,則必有,∴,解得,此時,則其根在區(qū)間內(nèi),所以,綜上,存在,使得對任意,關(guān)于的方程在區(qū)間上總有三個不等根,,,的取值范圍為.【點睛】關(guān)鍵點點睛:本題第二問關(guān)鍵是把問題轉(zhuǎn)化為對于任意的關(guān)于t的方程,在區(qū)間上總有兩個不等根,且有兩個不等根,只有一個根,進而利用二次函數(shù)性質(zhì)可求.21、(1),,;(2);(3).【解析】(1)由題知,,進而求解即可得答案;(2)由題知函數(shù)在上是增函數(shù),故,進而解不等式即可得答案.(3)由題知,進而根據(jù)題意得方程在上至少含有10個零點,進而得,再解不等式即可得答案.【詳解】解:(1)由題知,因為是周期為的偶函數(shù),所以,,解得:,,所以,.(2)因為,所以,因為函數(shù)在上是增函數(shù),所以函數(shù)在上是增函數(shù),所以,解得,又因為,故.所以的最大值為.(3)當(dāng)時,,所以,當(dāng)時,,又因為函數(shù)在上至少含有10個零點,所以方程在上至少含有10個零點,所以,解得故b最小值為.【點睛】本題考查三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)城市中的智能化垃圾分類與處理
- 物流園區(qū)中的多式聯(lián)運組織與管理
- 國慶節(jié)手表銷售活動方案
- 臨時用電專項施工方案編制
- 現(xiàn)代辦公環(huán)境下的溝通技巧與團隊合作
- 生產(chǎn)中的柔性管理策略及實踐應(yīng)用
- 學(xué)生國慶節(jié)游玩活動方案
- Unit 1 Sports and Game Lesson 3(說課稿)-2024-2025學(xué)年人教新起點版英語四年級上冊
- 25 王戎不取道旁李(說課稿)-2024-2025學(xué)年統(tǒng)編版語文四年級上冊
- 2024年六年級品社下冊《可怕的物種入侵》說課稿2 蘇教版
- 2025年三人合伙投資合作開店合同模板(三篇)
- 2025年合資經(jīng)營印刷煙包盒行業(yè)深度研究分析報告
- 天津市五區(qū)縣重點校2024-2025學(xué)年高一上學(xué)期1月期末聯(lián)考試題 化學(xué) 含答案
- 吉林省吉林市普通中學(xué)2024-2025學(xué)年高三上學(xué)期二模試題 生物 含答案
- 人教版高一數(shù)學(xué)上冊期末考試試卷及答案
- 安全學(xué)原理第2版-ppt課件(完整版)
- 機動車登記證書
- 彈性力學(xué)第十一章彈性力學(xué)的變分原理
- 鉭鈮礦開采項目可行性研究報告寫作范文
- 小升初數(shù)學(xué)銜接班優(yōu)秀課件
- 出口食品生產(chǎn)企業(yè)備案自我評估表
評論
0/150
提交評論