延安市重點中學2023屆數(shù)學高一上期末調研模擬試題含解析_第1頁
延安市重點中學2023屆數(shù)學高一上期末調研模擬試題含解析_第2頁
延安市重點中學2023屆數(shù)學高一上期末調研模擬試題含解析_第3頁
延安市重點中學2023屆數(shù)學高一上期末調研模擬試題含解析_第4頁
延安市重點中學2023屆數(shù)學高一上期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.函數(shù)的一個單調遞增區(qū)間是()A. B.C. D.2.若方程x2+2x+m2+3m=mcos(x+1)+7有且僅有1個實數(shù)根,則實數(shù)m的值為()A.2 B.-2C.4 D.-43.若方程有兩個不相等的實數(shù)根,則實根的取值范圍是()A. B.C. D.4.已知集合,集合,則()A.0 B.C. D.5.棱長為1的正方體可以在一個棱長為的正四面體的內部任意地轉動,則的最小值為A. B.C. D.6.由直線上的點向圓引切線,則切線長的最小值為A. B.C. D.7.半徑為1cm,圓心角為的扇形的弧長為()A. B.C. D.8.設,其中、是正實數(shù),且,,則與的大小關系是()A. B.C. D.9.已知函數(shù),下面關于說法正確的個數(shù)是()①的圖象關于原點對稱②的圖象關于y軸對稱③的值域為④在定義域上單調遞減A.1 B.2C.3 D.410.下列函數(shù)中為偶函數(shù)的是()A. B.C. D.11.已知為銳角,且,,則A. B.C. D.12.過點且與原點距離最大的直線方程是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限的角,且,則;④直線是函數(shù)的一條對稱軸;⑤函數(shù)的圖像關于點成對稱中心圖形.其中正確命題序號是__________.14.已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-1=0對稱,則圓C2的方程為______15.已知集合,,且,則實數(shù)的取值范圍是__________16.函數(shù)在上存在零點,則實數(shù)a的取值范圍是______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式;(2)用定義證明在上是增函數(shù).18.某公司為了解宿州市用戶對其產(chǎn)品的滿意度,從宿州市,兩地區(qū)分別隨機調查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖(如圖)和地區(qū)的用戶滿意度評分的頻數(shù)分布表(如表1)滿意度評分頻數(shù)2814106表1滿意度評分低于70分滿意度等級不滿意滿意非常滿意表2(1)求圖中的值,并分別求出,兩地區(qū)樣本用戶滿意度評分低于70分的頻率(2)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級(如表2),將頻率看作概率,從,兩地用戶中各隨機抽查1名用戶進行調查,求至少有一名用戶評分滿意度等級為“滿意”或“非常滿意”的概率.19.已知函數(shù).(1)求不等式的解集;(2)函數(shù),若存在,使得成立,求實數(shù)的取值范圍;(3)若函數(shù),討論函數(shù)的零點個數(shù).20.設函數(shù)(且,)(1)若是定義在R上的偶函數(shù),求實數(shù)k的值;(2)若,對任意的,不等式恒成立,求實數(shù)a的取值范圍21.2021年起,遼寧省將實行“3+1+2”高考模式,為讓學生適應新高考的賦分模式某校在一次校考中使用賦分制給高三年級學生的化學成績進行賦分,具體賦分方案如下:先按照考生原始分從高到低按比例劃定A、B、C、D、E共五個等級,然后在相應賦分區(qū)間內利用轉換公式進行賦分A等級排名占比15%,賦分分數(shù)區(qū)間是86-100;B等級排名占比35%,賦分分數(shù)區(qū)間是71-85;C等級排名占比35%,賦分分數(shù)區(qū)間是56-70;D等級排名占比13%,賦分分數(shù)區(qū)間是41-55;E等級排名占比2%,賦分分數(shù)區(qū)間是30-40;現(xiàn)從全年級的化學成績中隨機抽取100名學生的原始成績(未賦分)進行分析,其頻率分布直方圖如圖所示:(1)求圖中a的值;(2)用樣本估計總體的方法,估計該校本次化學成績原始分不少于多少分才能達到賦分后的C等級及以上(含C等級)?(結果保留整數(shù))(3)若采用分層抽樣的方法,從原始成績在[40,50)和[50,60)內的學生中共抽取5人,查看他們的答題情況來分析知識點上的缺漏,再從中選取2人進行調查分析,求這2人中恰有一人原始成績在[40,50)內的概率.22.已知定義在R上的函數(shù)滿足:①對任意實數(shù),,均有;②;③對任意,(1)求的值,并判斷的奇偶性;(2)對任意的x∈R,證明:;(3)直接寫出的所有零點(不需要證明)

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】利用正弦函數(shù)的性質,令即可求函數(shù)的遞增區(qū)間,進而判斷各選項是否符合要求.【詳解】令,可得,當時,是的一個單調增區(qū)間,而其它選項不符合.故選:A2、A【解析】令,由對稱軸為,可得,解出,并驗證即可.【詳解】依題意,有且僅有1個實數(shù)根.令,對稱軸為.所以,解得或.當時,,易知是連續(xù)函數(shù),又,,所以在上也必有零點,此時不止有一個零點,故不合題意;當時,,此時只有一個零點,故符合題意.綜上,.故選:A【點睛】關鍵點點睛:構造函數(shù),求出的對稱軸,利用對稱的性質得出.3、B【解析】方程有兩個不相等的實數(shù)根,轉化為有兩個不等根,根據(jù)圖像得到只需要故答案為B.4、B【解析】由集合的表示方法以及交集的概念求解.【詳解】由題意,集合,,∴.故選:B5、A【解析】由題意可知正方體的外接球為正四面體的內切球時a最小,此時R=,.6、B【解析】過圓心作直線的垂線,垂線與直線的交點向圓引切線,切線長最小【詳解】圓心,半徑,圓心到直線的距離則切線長的最小值【點睛】本題考查圓的切線長,考查數(shù)形結合思想,屬于基礎題7、D【解析】利用扇形弧長公式直接計算即可.【詳解】圓心角化為弧度為,則弧長為.故選:D.8、B【解析】利用基本不等式結合二次函數(shù)的基本性質可得出與的大小關系.【詳解】因為、是正實數(shù),且,則,,因此,.故選:B.9、B【解析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質可得單調性和值域.【詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關于原點對稱,即①正確,②不正確;因為,由于單調遞減,所以單調遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【點睛】關鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調性簡單的判斷方式.10、B【解析】利用函數(shù)奇偶性的定義可判斷A、B、C選項中各函數(shù)的奇偶性,利用特殊值法可判斷D選項中函數(shù)的奇偶性.【詳解】對于A選項,令,該函數(shù)的定義域為,,所以,函數(shù)為奇函數(shù);對于B選項,令,該函數(shù)的定義域為,,所以,函數(shù)為偶函數(shù);對于C選項,函數(shù)的定義域為,則函數(shù)為非奇非偶函數(shù);對于D選項,令,則,,且,所以,函數(shù)為非奇非偶函數(shù).故選:B.【點睛】本題考查函數(shù)奇偶性的判斷,考查函數(shù)奇偶性定義的應用,考查推理能力,屬于基礎題.11、B【解析】∵為銳角,且∴∵,即∴,即∴∴故選B12、A【解析】首先根據(jù)題意得到過點且與垂直的直線為所求直線,再求直線方程即可.【詳解】由題知:過點且與原點距離最大的直線為過點且與垂直的直線.因為,故所求直線為,即.故選:A【點睛】本題主要考查直線方程的求解,數(shù)形結合為解題的關鍵,屬于簡單題.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、④⑤【解析】根據(jù)兩角和與差的正弦公式可得到sinα+cosαsin(α)結合正弦函數(shù)的值域可判斷①;根據(jù)誘導公式得到=sinx,再由正弦函數(shù)的奇偶性可判斷②;舉例說明該命題正誤可判斷③;x代入到y(tǒng)=sin(2xπ),根據(jù)正弦函數(shù)的對稱性可判斷④;x代入到,根據(jù)正切函數(shù)的對稱性可判斷⑤.【詳解】對于①,sinα+cosαsin(α),故①錯誤;對于②,=sinx,其為奇函數(shù),故②錯誤;對于③,當α、β時,α、β是第一象限的角,且α>β,但sinα=sinβ,故③錯誤;對于④,x代入到y(tǒng)=sin(2xπ)得到sin(2π)=sin1,故命題④正確;對于⑤,x代入到得到tan()=0,故命題⑤正確.故答案為④⑤【點睛】本題考查了三角函數(shù)的圖象與性質的應用問題,也考查了三角函數(shù)的化簡與求值問題,是綜合性題目14、【解析】在圓C2上任取一點(x,y),則此點關于直線對稱點(y+1,x-1)在圓C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案為考點:點關于直線的對稱點的求法點評:本題考查一曲線關于一直線對稱的曲線方程的求法:在圓C2上任取一點(x,y),則此點關于直線的對稱點(y+1,x-1)在圓C1上15、【解析】,是的子集,故.【點睛】本題主要考查集合的研究對象和交集的概念,考查指數(shù)不等式的求解方法,考查二次函數(shù)的值域等知識.對于一個集合,首先要確定其研究對象是什么元素,是定義域還是值域,是點還是其它的元素.二次函數(shù)的值域主要由開口方向和對稱軸來確定.在解指數(shù)或對數(shù)不等式時,要注意底數(shù)對單調性的影響.16、【解析】由可得,求出在上的值域,則實數(shù)a的取值范圍可求【詳解】由,得,即由,得,又∵函數(shù)在上存在零點,即實數(shù)a的取值范圍是故答案為【點睛】本題考查函數(shù)零點的判定,考查函數(shù)值域的求法,是基礎題三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)證明見解析.【解析】(1)由函數(shù)是定義在上的奇函數(shù),則,解得的值,再根據(jù),解得的值從而求得的解析式;(2)設,化簡可得,然后再利用函數(shù)的單調性定義即可得到結果【詳解】解:(1)依題意得∴∴∴(2)證明:任取,∴∵,∴,,,由知,,∴.∴.∴在上單調遞增.18、(1);地區(qū)樣本用戶滿意度評分低于70分的頻率為;地區(qū)樣本用戶滿意度評分低于70分的頻率為(2)【解析】(1)由頻率和等于1計算可求得,進而計算低于70分的頻率即可得出結果.(2)由(1)可知,記從地區(qū)隨機抽取一名用戶評分低于70分的事件記為,則;可以記從地區(qū)隨機抽取一名用戶評分低于的事件記為,則,由對立事件的概率公式計算即可得出結果.【小問1詳解】根據(jù)地區(qū)的頻率直方圖可得,解得所以地區(qū)樣本用戶滿意度評分低于70分的頻率為地區(qū)樣本用戶滿意度評分低于70分的頻率為【小問2詳解】根據(jù)用樣本頻率可以估計總體的頻率,可以記從地區(qū)隨機抽取一名用戶評分低于70分的事件記為,則;可以記從地區(qū)隨機抽取一名用戶評分低于的事件記為,則易知事件和事件相互獨立,則事件和事件相互獨立,記事件“至少有一名用戶評分滿意度等級為“滿意”或“非常滿意””為事件所以故至少有一名用戶評分滿意度等級為“滿意”或“非常滿意”的概率為19、(1)(2)(3)答案見解析【解析】(1)根據(jù)題意條件,分別求解的定義域和解對數(shù)不等式即可完成求解;(2)通過題意條件,找到和兩函數(shù)值域的關系,分別求解出對應的值域,通過分類討論即可完成求解;(3)通過題意條件,通過討論的值,分別作出對應的函數(shù)圖像,借助換元,觀察函數(shù)圖像的交點狀況,從而完成求解.【小問1詳解】函數(shù),由,可得,即的定義域為;不等式,所以,即為,解得,則原不等式的解為;【小問2詳解】函數(shù),若存在,使得成立,則和在上的值域的交集不為空集;由(1)可知:時,顯然單調遞減,所以其值域為;若,則在上單調遞減,所以的值域為,此時只需,即,所以;若,則在遞增,可得的值域為,此時與的交集顯然為空集,不滿足題意;綜上,實數(shù)的范圍是;小問3詳解】由,得,令,則,畫出的圖象,當,只有一個,對應3個零點,當時,,此時,由,得在,三個分別對應一個零點,共3個,在時,,三個分別對應1個,1個,3個零點,共5個,綜上所述:當時,只有1個零點,當或時,有3個零點,當時,有5個零點.【點睛】方法點睛:對于“存在,使得成立”,需要將其轉化成兩函數(shù)值域的關系,即兩個函數(shù)的值域有交集,需根據(jù)函數(shù)的具體范圍進行適時的分類討論即可.20、(1)1(2)【解析】(1)由函數(shù)奇偶性列出等量關系,求出實數(shù)k的值;(2)對原式進行化簡,得到對恒成立,分和兩種情況分類討論,求出實數(shù)a的取值范圍.【小問1詳解】由可得,即對恒成立,可解得:【小問2詳解】當時,有由,即有,且故有對恒成立,①若,則顯然成立②若,則函數(shù)在上單調遞增故有,解得:;綜上:實數(shù)a的取值范圍為21、(1)a0.030;(2)54分;(3).【解析】(1)由各組頻率和為1列方程即可得解;(2)由頻率分布直方圖結合等級達到C及以上所占排名等級占比列方程即可的解;(3)列出所有基本事件及滿足要求的基本事件,由古典概型概率公式即可得解.【詳解】(1)由題意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等級達到C及以上所占排名等級占比為15%+35%+35%=85%,假設原始分不少于x分可以達到賦分后的C等級及以上,易得,則有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能達到賦分后的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論